【记录】使用远程SSH配置d2l环境(含装pytorch,同时适用于本地anaconda)


前言

记录一下如何利用使用命令行进行anaconda配置 d2l环境、pytorch并进行训练深度学习模型。


一、从创建新环境开始

如果是本地直接装一个 anaconda 软件就行,如果是像我样使用 SSH 远程连接服务器进行操作,建议服务器上安装一个 miniconda。conda中创建一个新环境的命令是:

conda  create  --name  env_name(你的环境名字) python=3.8 # 创建指定python版本

在这里插入图片描述
无脑y就是了
在这里插入图片描述
使用conda info --envs 可以查看环境,可以看到我们已经创建好一个名叫 d2l 的新环境了

在这里插入图片描述
使用conda actiavte d2l进入这个新环境中
在这里插入图片描述

二、使用步骤

1.安装pytorch

首先我们要查看一下我们显卡所支持的CUDA版本,在命令行输入nvidia-smi,然后图中画框的地方就可以看到我们显卡的CUDA支持版本,我这里这块 RTX 4090 最高支持 12.2 的 CUDA。
在这里插入图片描述

首先我们需要在torch官网中查看一下对应的torch版本。我选了中间的 CUDA 12.1 进行安装,将pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu121这行复制下来。
在这里插入图片描述
直接粘贴到命令行运行就行,然后就开始框框下载了。
在这里插入图片描述

安装完之后就会显示 successfully 巴拉巴拉:
在这里插入图片描述
以防万一,我们输入pip list检查一下是不是真的装上了:
在这里插入图片描述

2.安装 d2l 包

我这里是使用pip install d2l==0.17.6 -i https://pypi.mirrors.ustc.edu.cn/simple安装 0.17.6 版本的 d2l 包。
在这里插入图片描述
同理使用pip list检查一下,可以看到是安装成功的
在这里插入图片描述
同时推荐用pip install jupyter -i https://pypi.mirrors.ustc.edu.cn/simple安装一下jupyter notebook,毕竟mu神视频一直用得是jupyter,也挺好使。

在这里插入图片描述

3.安装其他包

还是使用pip install pack_name -i https://pypi.mirrors.ustc.edu.cn/simple的格式安装你的代码所需要的其他包

4.使用jupyter notebook

输入

jupytet notebook

或者是,其中这个root是我在远程服务器的容器名称

jupyter notebook --allow-root

进入jupyter界面之后就是这样:
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值