# 第三十二次codeforces竞技结束 #299 Div 2

68 篇文章 0 订阅

Problems

# Name
A
standard input/output
1 s, 256 MB
x3149
B
standard input/output
1 s, 256 MB
x2105
C
standard input/output
1 s, 256 MB
x1582
D
standard input/output
1 s, 256 MB
x716
E
standard input/output
2 s, 256 MB
x103

### A. Exam

time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

An exam for n students will take place in a long and narrow room, so the students will sit in a line in some order. The teacher suspects that students with adjacent numbers (i and i + 1) always studied side by side and became friends and if they take an exam sitting next to each other, they will help each other for sure.

Your task is to choose the maximum number of students and make such an arrangement of students in the room that no two students with adjacent numbers sit side by side.

Input

A single line contains integer n (1 ≤ n ≤ 5000) — the number of students at an exam.

Output

In the first line print integer k — the maximum number of students who can be seated so that no two students with adjacent numbers sit next to each other.

In the second line print k distinct integers a1, a2, ..., ak (1 ≤ ai ≤ n), where ai is the number of the student on the i-th position. The students on adjacent positions mustn't have adjacent numbers. Formally, the following should be true: |ai - ai + 1| ≠ 1 for all i from 1 tok - 1.

If there are several possible answers, output any of them.

Sample test(s)
input
6
output
6
1 5 3 6 2 4
input
3

output
2
1 3

#### Code：

#include <cmath>
#include <cctype>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))

bool cmp(const int a, const int b)
{
return a > b;
}

int main()
{
int n;	cin>>n;
if(n==1 || n==2) cout<<1<<endl<<1<<endl;
else if(n==3) cout<<2<<endl<<"1 3"<<endl;
else
{
printf("%d\n",n);
int mid=n/2+1;
for(int i=1;mid-i>0 || mid+i<=n;i++)
{
if(mid-i>0) printf("%d ",mid-i);
if(mid+i<=n) printf("%d ",mid+i);
}
printf("%d",n/2+1);
}
return 0;
}


### B. Covered Path

time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

The on-board computer on Polycarp's car measured that the car speed at the beginning of some section of the path equals v1 meters per second, and in the end it is v2 meters per second. We know that this section of the route took exactly t seconds to pass.

Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by d meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed d in absolute value), find the maximum possible length of the path section in meters.

Input

The first line contains two integers v1 and v2 (1 ≤ v1, v2 ≤ 100) — the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively.

The second line contains two integers t (2 ≤ t ≤ 100) — the time when the car moves along the segment in seconds, d (0 ≤ d ≤ 10) — the maximum value of the speed change between adjacent seconds.

It is guaranteed that there is a way to complete the segment so that:

• the speed in the first second equals v1,
• the speed in the last second equals v2,
• the absolute value of difference of speeds between any two adjacent seconds doesn't exceed d.
Output

Print the maximum possible length of the path segment in meters.

Sample test(s)
input
5 6
4 2

output
26
input
10 10
10 0

output
100
Note

In the first sample the sequence of speeds of Polycarpus' car can look as follows: 5, 7, 8, 6. Thus, the total path is 5 + 7 + 8 + 6 = 26meters.

In the second sample, as d = 0, the car covers the whole segment at constant speed v = 10. In t = 10 seconds it covers the distance of 100 meters.

#### Code:

#include <cmath>
#include <cctype>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))

bool cmp(const int a, const int b)
{
return a > b;
}

int v[128]={0};

int getsum(int t)
{
int s=0;	//就这里忘了初始化0，就给我算错么Q^Q
for(int i=0;i<t;i++)
{
s+=v[i];
//cout<<i<<":"<<v[i]<<endl;
}
return s;
}

int main()
{
int v1=0,v2=0,t=0,d=0,l=0,r=0;
scanf("%d%d%d%d",&v1,&v2,&t,&d);
v[0]=v1,v[t-1]=v2,r=t-1;//r=t-1 forgotten
for(int i=1;i<t-i-1;i++)
{
l=i,r=t-i-1;
v[l]=v[l-1]+d;
v[r]=v[r+1]+d;
//cout<<v[l]<<":"<<v[r]<<endl;
}
if(t%2)
{
l++;
v[l]=v[l-1]+d;
}
//cout<<l<<":"<<r<<endl;
while(abs(v[l]-v[r])>d)
{
if(v[l]>v[r]) v[l--]=v[r--]+d;
else v[r++]=v[l++]+d;
}
cout<<getsum(t)<<endl;
return 0;
}


### C. Polycarpus' Dice

time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarp has n dice d1, d2, ..., dn. The i-th dice shows numbers from 1 to di. Polycarp rolled all the dice and the sum of numbers they showed is A. Agrippina didn't see which dice showed what number, she knows only the sum A and the values d1, d2, ..., dn. However, she finds it enough to make a series of statements of the following type: dice i couldn't show number r. For example, if Polycarp had two six-faced dice and the total sum is A = 11, then Agrippina can state that each of the two dice couldn't show a value less than five (otherwise, the remaining dice must have a value of at least seven, which is impossible).

For each dice find the number of values for which it can be guaranteed that the dice couldn't show these values if the sum of the shown values is A.

Input

The first line contains two integers n, A (1 ≤ n ≤ 2·105, n ≤ A ≤ s) — the number of dice and the sum of shown values where s = d1 + d2 + ... + dn.

The second line contains n integers d1, d2, ..., dn (1 ≤ di ≤ 106), where di is the maximum value that the i-th dice can show.

Output

Print n integers b1, b2, ..., bn, where bi is the number of values for which it is guaranteed that the i-th dice couldn't show them.

Sample test(s)
input
2 8
4 4

output
3 3
input
1 3
5

output
4
input
2 3
2 3

output
0 1
Note

In the first sample from the statement A equal to 8 could be obtained in the only case when both the first and the second dice show 4. Correspondingly, both dice couldn't show values 1, 2 or 3.

In the second sample from the statement A equal to 3 could be obtained when the single dice shows 3. Correspondingly, it couldn't show 1, 2, 4 or 5.

In the third sample from the statement A equal to 3 could be obtained when one dice shows 1 and the other dice shows 2. That's why the first dice doesn't have any values it couldn't show and the second dice couldn't show 3.

Code：

#include <cmath>
#include <cctype>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))

bool cmp(const int a, const int b)
{
return a > b;
}

int n=0,d[200086]={0};
ll  a=0,b[200086]={0},s=0;

int main()
{
scanf("%d%I64d",&n,&a);
for(int i=0;i<n;i++)
{
scanf("%d",&d[i]);
s+=d[i];
}
for(int i=0;i<n;i++)
{
//不能取的有两种情况：
ll si=a-s+d[i]-1; //small_impossible=其他都取最大时，不能小于某值
ll bi=d[i]-a+n-1;//big_impossible=其他都取最小值1时，不能大于某值
ll ai=0LL;	//all_impossible
if(si>=0 && bi>=0) ai=si+bi;
else if(si>=0) ai=si;
else if(bi>=0) ai=bi;
else ai=0LL;
b[i]=max(0LL,ai);
printf("%I64d",b[i]);
if(i<n-1)printf(" ");
}
return 0;
}


Code：

#include <cmath>
#include <cctype>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
bool cmp(const int a, const int b)
{
return a > b;
}

ll ans=0LL,tmp=0LL;
ll dp[200086]={0};
int mrk[200086]={0},tmrk[200086]={0};

int main()
{
int n=0, now=0, i=0;	cin>>n;
for(i=1;i<=n;i++)
{
scanf("%I64d",&dp[i]);
}
int m=0;	cin>>m;
for(i=0;i<m;i++)
{
scanf("%d",&now);
mrk[now]++;
tmrk[now]++;
}
if(n==2)
{
printf("%I64d",(dp[2]-dp[1])*(mrk[1]+mrk[2]-1));
return 0;
}
int mr=min(mrk[1],mrk[n]);
for(int i=2;i<=n-1;i++)
{
tmrk[i]/=2;
mr=min(mr,tmrk[i]);
}
if(mrk[1]>1 || mrk[n]>1 || mr>=1)
{
int round=min(mrk[1],mrk[n]);
round=min(mr,round);
mrk[1]-=round; mrk[n]-=round;
for(int i=2;i<=n-1;i++)
mrk[i]-=round*2;
ans+=(dp[n]-dp[1])*2*round;
//		cout<<round<<":"<<mrk[1]<<mrk[2]<<mrk[3];
//		cout<<"now"<<ans<<endl;
}
if(m==n*2-2)
{
ll dist=dp[2]-dp[1];
if(n!=2) for(int i=3;i<=n;i++)
{
if(dp[i]-dp[i-1]!=dist)
{
printf("-1");
return 0;
}
}
cout<<(ll)(dp[n]-dp[1])*2LL-dist<<endl;
return 0;
}
int f1=0,f2l=0,f2r=0;
int l1=0,l2=0,
r1=0,r2=0;
i=1;	while(mrk[i]==0)i++;
if(mrk[1]==1 && mrk[2]==2)
{
mrk[1]=2;
f2l=l2=1;
while(mrk[l2]==2 && l2<=n)l2++;l2--;
}
if(mrk[n]==1 && mrk[n-1]==2)
{
mrk[n]=2;
f2r=1;
r2=n;
while(mrk[r2]==2 && r2>=1)r2--;r2++;
}
for(i=max(l2,i);i<=n;i++)
{
if(f1==0 && mrk[i]==1)
{
f1=1;
l1=r1=i;
while(mrk[r1]==1 && r1<=n) r1++;r1--;
}
}
//f2l\f2r\f1 =========l2/l1--------------r1/r2============
//f2l		==========l2
//f2r		r2==========
//f1\f2r     l1-------------r1/r2=============
//f1\f2l	============l2/l1------------
//f1		l1---------------------l2

//cout<<l1<<":"<<r1<<"  "<<l2<<":"<<r2<<endl;
if(f1) ans+=(ll)(dp[r1]-dp[l1]);
if(f2l) ans+=(ll)(dp[l2]-dp[1])*2LL;
if(f2r) ans+=(ll)(dp[n]-dp[r2])*2LL;
if(f1&&f2l) ans+=(ll)(dp[l1]-dp[l1-1]);
if(f1&&f2r) ans+=(ll)(dp[r1+1]-dp[r1]);
cout<<ans<<endl;
return 0;
}


• 0
点赞
• 0
收藏
觉得还不错? 一键收藏
• 打赏
• 0
评论
10-17 782
11-22 806
12-04 651
09-16 740
01-30 786
03-04 984
09-29 692
10-17 623
06-01 3783
05-31 2849
11-06 2518

¥1 ¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。