基于Docker的JMeter分布式压测

一个JMeter实例可能无法产生足够的负载来对你的应用程序进行压力测试。如本网站所示,一个JMeter实例将能够控制许多其他的远程JMeter实例,并对你的应用程序产生更大的负载。JMeter使用Java RMI[远程方法调用]来与分布式网络中的对象进行交互。JMeter主站和从站的通信如下图所示:

图片

我们需要为每个Slave/Server打开2个端口。

Server_port=1099
server.rmi.localport=50000

在客户机上打开一个端口,让从机将结果发送给主机。

client.rmi.localport=60000

通过在多台机器上运行JMeter的多个实例作为服务器,我们可以根据需要产生大量的负载。

图片

Docker

docker在这里有什么用?

Docker有点像一个虚拟机。但与虚拟机不同的是,Docker不是创建一个完整的虚拟操作系统,而是允许应用程序使用与它们所运行的系统相同的Linux内核,只要求应用程序与主机上尚未运行的东西一起运送。这使性能得到了极大的提升,并减少了应用程序的大小

Docker是一个基础设施的管理者。它能够将一个软件和它的所有依赖物打包成一个容器来运行。你可以将打包成docker镜像的软件部署到任何安装了docker的机器上。它将软件与硬件分离,因此开发者可以放心,应用程序将在任何机器上运行,无论该机器是否有任何定制的设置,可能与用于编写和测试代码的机器不同。

Docker在JMeter分布式测试中的作用

如果我们看一下上面的设置--要做分布式负载测试--我们需要1个主站和N个从站来产生巨大的负载。每台JMeter从机都需要安装特定版本的Java和JMeter。特定的端口应被打开,JMeter服务器应运行,准备并等待主站发送指令。

手动设置一些机器可能看起来很容易。如果我们要为50台、100台、1000台机器做这件事呢?想象一下,如果我们将来需要在所有的机器上升级JMeter版本,会发生什么?这就是docker出现的原因。

我们基本上在一个叫做Dockerfile的文件中设置了JMeter分布式测试的整个基础设施。检查这些dockerfile,并阅读注释以了解每一步的作用。

Dockerfile用于JMeter基础:

在分布式测试中,所有的环境都要有相同版本的Java、JMeter和插件等。主站和从站之间的唯一区别是暴露的端口和运行的进程。因此,让我们创建一个Docker文件,其中有主站和从站的所有共同步骤。让我们把它称为jmbase镜像,我们需要做以下工作来建立我们的基础镜像。

我们需要Java8 - 所以让我们打开jdk-8-jre瘦身版,以保持尽可能小的体积。

我们可能需要一些实用程序,如wget、unzip、telnet等。所以让我们安装它们。

我们需要最新版本的JMeter。为版本创建一个变量--这样以后的维护就会更容易。

添加一个包含所有插件的文件夹。

添加一个包含样本测试的文件夹。

 
 
  1. # Use Java 8 slim JRE

  2. FROM openjdk:8-jre-slim

  3. MAINTAINER TestAutomationGuru

  4. # JMeter version

  5. ARG JMETER_VERSION=3.3

  6. # Install few utilities

  7. RUN apt-get clean && \

  8. apt-get update && \

  9. apt-get -qy install \

  10. wget \

  11. telnet \

  12. iputils-ping \

  13. unzip

  14. # Install JMeter

  15. RUN mkdir /jmeter \

  16. && cd /jmeter/ \

  17. && wget https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-$JMETER_VERSION.tgz \

  18. && tar -xzf apache-jmeter-$JMETER_VERSION.tgz \

  19. && rm apache-jmeter-$JMETER_VERSION.tgz

  20. # ADD all the plugins

  21. ADD jmeter-plugins/lib /jmeter/apache-jmeter-$JMETER_VERSION/lib

  22. # ADD the sample test

  23. ADD sample-test sample-test

  24. # Set JMeter Home

  25. ENV JMETER_HOME /jmeter/apache-jmeter-$JMETER_VERSION/

  26. # Add JMeter to the Path

  27. ENV PATH $JMETER_HOME/bin:$PATH

用于JMeter客户端/主站的Dockerfile
Master dockerfile应继承自基础镜像,并应暴露60000端口:

 
 
  1. # Use vinsdocker base image

  2. FROM vinsdocker/jmbase

  3. MAINTAINER TestAutomationGuru

  4. # Ports to be exposed from the container for JMeter Master

  5. EXPOSE 60000

Dockerfile for JMeter Server / Slave:

服务器docker文件应该从基础镜像中继承,并且应该暴露1099和50000端口。jmeter-server应该正在运行

 
 
  1. # Use vinsdocker base image

  2. FROM vinsdocker/jmbase

  3. MAINTAINER TestAutomationGuru

  4. # Ports to be exposed from the container for JMeter Slaves/Server

  5. EXPOSE 1099 50000

  6. # Application to run on starting the container

  7. ENTRYPOINT $JMETER_HOME/bin/jmeter-server \

  8. -Dserver.rmi.localport=50000 \

  9. -Dserver_port=1099

正如你在上面的Dockerfile中看到的,如果我们需要改变Java/JMeter的版本/端口,我只需要更新dockerfile,Docker会处理剩下的事情。

我已经将这些Dockerfile推送到vinsdocker账户下的docker hub中。因此,任何人都可以提取这些文件并建立JMeter分布式测试基础设施。

确保docker已经安装在你的机器上。一旦安装完毕,剩下的就很容易了。你只需要遵循这里的步骤。
逐一运行以下命令:

sudo docker run -dit --name slave01 vinsdocker/jmserver /bin/bash
sudo docker run -dit --name slave02 vinsdocker/jmserver /bin/bash
sudo docker run -dit --name slave03 vinsdocker/jmserver /bin/bash

Docker会自动提取我上传的docker镜像,并为JMeter服务器创建3个容器。如果你需要更多的容器,继续执行上述命令,只需改变容器名称即可。

运行下面的命令,为JMeter主服务器创建一个容器

sudo docker run -dit --name master vinsdocker/jmmaster /bin/bash

运行下面的命令可以看到所有正在运行的容器和打开的端口等:

sudo docker ps –a

图片

运行下面的命令来获得这些容器的IP地址列表:

sudo docker inspect --format '{{ .Name }} => {{ .NetworkSettings.IPAddress }}' $(sudo docker ps -a -q)

图片

我在docker镜像中包含了一个运行了30秒的样本测试,其中有5个并发用户,你可以在容器中看到。路径。/sample-test/sample-test.jmx

如果 - 你需要从主机复制任何文件到docker容器 - 你可以发出以下命令。例如:我把测试复制到我的JMeter主容器中。这个命令将把我的本地jmeter测试(docker-test.jmx)复制到主容器的这个路径中:

/jmeter/apache-jmeter-3.3/bin/docker-test.jmx

sudo docker exec -i master sh -c 'cat > /jmeter/apache-jmeter-3.3/bin/docker-test.jmx' < docker-test.jmx

用下面的命令进入容器内部,我们可以看到文件是否被成功复制了:

sudo docker exec -it master /bin/bash

让我们在主服务器上运行测试,看看它是否工作正常[不是在分布式模式下]。Docker容器将能够运行JMeter测试,因为它拥有运行JMeter测试的所有软件和依赖:

 
  1. jmeter -n -t sample-test/sample-test.jmx

  2. Creating summariser <summary>

  3. Created the tree successfully using sample-test/sample-test.jmx

  4. Starting the test @ Thu Dec 21 17:14:59 UTC 2017 (1513876499683)

  5. Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445

  6. summary + 1 in 00:00:01 = 1.5/s Avg: 265 Min: 265 Max: 265 Err: 0 (0.00%) Active: 1 Started: 1 Finished: 0

  7. summary + 336 in 00:00:29 = 11.4/s Avg: 112 Min: 87 Max: 325 Err: 0 (0.00%) Active: 5 Started: 5 Finished: 0

  8. summary = 337 in 00:00:30 = 11.2/s Avg: 113 Min: 87 Max: 325 Err: 0 (0.00%)

  9. summary + 4 in 00:00:00 = 210.5/s Avg: 97 Min: 93 Max: 109 Err: 0 (0.00%) Active: 0 Started: 5 Finished: 5

  10. summary = 341 in 00:00:30 = 11.3/s Avg: 113 Min: 87 Max: 325 Err: 0 (0.00%)

  11. Tidying up ... @ Thu Dec 21 17:15:30 UTC 2017 (1513876530127)

  12. ... end of run

就这样了。现在我们已经准备好使用docker容器在分布式中运行我们的测试。我们只需要添加-R[slave01,slave02,slave03]

 
  1. jmeter -n -t sample-test/sample-test.jmx -R172.17.0.5,172.17.0.6,172.17.0.7

  2. Creating summariser <summary>

  3. Created the tree successfully using sample-test/sample-test.jmx

  4. Configuring remote engine: 172.17.0.5

  5. Configuring remote engine: 172.17.0.6

  6. Configuring remote engine: 172.17.0.7

  7. Starting remote engines

  8. Starting the test @ Thu Dec 21 17:01:48 UTC 2017 (1513875708955)

  9. Remote engines have been started

  10. Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445

  11. summary + 4 in 00:00:11 = 0.4/s Avg: 182 Min: 98 Max: 232 Err: 0 (0.00%) Active: 15 Started: 15 Finished: 0

  12. summary + 1021 in 00:00:20 = 51.5/s Avg: 111 Min: 85 Max: 283 Err: 0 (0.00%) Active: 0 Started: 15 Finished: 15

  13. summary = 1025 in 00:00:30 = 33.7/s Avg: 111 Min: 85 Max: 283 Err: 0 (0.00%)

  14. Tidying up remote @ Thu Dec 21 17:02:20 UTC 2017 (1513875740196)

  15. ... end of run

如果你已经注意到,我们在同一台主机上创建了所有的容器。也就是说,JMeter和JMeter从机都在同一台机器上运行。因此,所有的系统资源将被这些容器共享。

图片

总结

在这篇文章中,我们的目的是使用Docker来创建JMeter分布式测试基础设施。如果你按照上面的步骤,你就会明白,使用docker创建测试基础设施是非常容易和快速的。我们把整个基础设施写在一个文件中,可以进行版本控制。然后我们从该文件中创建一个实例(容器)。Docker确保该容器具有所有的软件和依赖性等。你可能会问,在一台机器上运行多个jmeter服务器实例以产生更多的负载是否可以?不,这是不可以的。这根本没有帮助。事实上,一个JMeter实例比在同一主机上运行多个JMeter实例能够产生更多的负载。

那么,为什么我们要使用docker并做这些事呢?正如我上面所说,我们在这里的目的是了解docker在JMeter测试中的作用。当我们使用AWS/Digitalocean这些云计算服务提供商时,我们可以理解docker的真正用途,在那里你可以按需创建任意数量的虚拟机。

感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

 

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!有需要的小伙伴可以点击下方小卡片领取   

 

在进行docker jmeter分布式压测时,如果出现错误,可以按以下步骤进行排查和解决: 1. 首先,检查各台slaver机器是否按照要求安装了相同版本的jdk和jmeter,并且在相同的目录下安装。确保各机器的环境配置一致。 2. 确认/etc/hosts的IP和hostname的映射是否正确配置,确保各机器之间可以相互通信。 3. 修改各机器的jmeter的默认内存参数,根据实际需求调整为合适的大小。这可以提高性能并减少出现异常的可能性。 4. 如果在压测过程中出现异常或错误,可以查看服务端的日志,检查是否有异常或错误信息。根据提示信息定位问题,可以根据服务端的业务架构逐层排查,直到找到发生问题的服务。 5. 对于出现的异常或错误信息,可以自行分析解决。例如,"Response code: 500"通常表示服务端出现问题。可以通过查看服务端的日志,根据提示信息来定位分析问题。对于不熟悉的错误信息,建议使用Google进行搜索,可能会找到一些可行的解决方案。 总结: 在使用docker jmeter进行分布式压测时,如果出现错误,首先要确保各机器的环境配置一致,然后检查配置文件和日志等相关信息,逐步排查问题并尝试解决。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [微服务项目容器编排docker-compose.yml、Dockerfile文件模板、相关配置文件、shell脚本](https://download.csdn.net/download/qq_45629145/88248761)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Jmeter压测思路+实操+报告分析](https://blog.csdn.net/qq_34671951/article/details/96477884)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值