(涛菜菜)模拟算法

一,旋转数组

一个数组A中存有 n 个整数,在不允许使用另外数组的前提下,将每个整数循环向右移 M( M >=0)个位置,即将A中的数据由(A0 A1 ……AN-1 )变换为(AN-M …… AN-1 A0 A1 ……AN-M-1 )(最后 M 个数循环移至最前面的 M 个位置)。如果需要考虑程序移动数据的次数尽量少,要如何设计移动的方法?

数据范围:0<n≤100,0≤m≤1000

进阶:空间复杂度 O(1),时间复杂度 O(n)

具体做法:

  • step 1:因为m可能大于n,因此需要对n取余,因为每次长度为n的旋转数组相当于没有变化。
  • step 2:第一次将整个数组翻转,得到数组的逆序,它已经满足了右移的整体出现在了左边。
  • step 3:第二次就将左边的m个元素单独翻转,因为它虽然移到了左边,但是逆序了。
  • step 4:第三次就将右边的n−m个元素单独翻转,因此这部分也逆序了。

class Solution {
public:
    vector<int> solve(int n, int m, vector<int>& a) {
        //取余,因为每次长度为n的旋转数组相当于没有变化
        m=m%n;
        //第一次逆转全部数组元素
        reverse(a.begin(),a.end());
        //第二次只逆转开头m个
        reverse(a.begin(),a.begin()+m);
        //第三次只逆转结尾m个
        reverse(a.begin()+m,a.end());
        return a;
    }
};

二,顺时针旋转矩阵

有一个NxN整数矩阵,请编写一个算法,将矩阵顺时针旋转90度。

给定一个NxN的矩阵,和矩阵的阶数N,请返回旋转后的NxN矩阵。

数据范围:0<n<300,矩阵中的值满足 0≤val≤1000

要求:空间复杂度 O(N2),时间复杂度 O(N2)

进阶:空间复杂度 O(1),时间复杂度 O(N2)

具体做法:

  • step 1:遍历矩阵的下三角矩阵,将其与上三角矩阵对应的位置互换,其实就是数组下标交换后的互换。
  • step 2:遍历矩阵每一行,将每一行看成一个数组使用reverse函数翻转。
class Solution {
public:
    vector<vector<int> > rotateMatrix(vector<vector<int> >& mat, int n) {
        //矩阵转置
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<i;j++)
            {
                //交换上三角和下三角对应的元素
                swap(mat[i][j],mat[j][i]);
            }
        }
        for(int i=0;i<n;i++)
            reverse(mat[i].begin(),mat[i].end());
        return mat;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值