一,旋转数组
一个数组A中存有 n 个整数,在不允许使用另外数组的前提下,将每个整数循环向右移 M( M >=0)个位置,即将A中的数据由(A0 A1 ……AN-1 )变换为(AN-M …… AN-1 A0 A1 ……AN-M-1 )(最后 M 个数循环移至最前面的 M 个位置)。如果需要考虑程序移动数据的次数尽量少,要如何设计移动的方法?
数据范围:0<n≤100,0≤m≤1000
进阶:空间复杂度 O(1),时间复杂度 O(n)
具体做法:
- step 1:因为m可能大于n,因此需要对n取余,因为每次长度为n的旋转数组相当于没有变化。
- step 2:第一次将整个数组翻转,得到数组的逆序,它已经满足了右移的整体出现在了左边。
- step 3:第二次就将左边的m个元素单独翻转,因为它虽然移到了左边,但是逆序了。
- step 4:第三次就将右边的n−m个元素单独翻转,因此这部分也逆序了。
class Solution {
public:
vector<int> solve(int n, int m, vector<int>& a) {
//取余,因为每次长度为n的旋转数组相当于没有变化
m=m%n;
//第一次逆转全部数组元素
reverse(a.begin(),a.end());
//第二次只逆转开头m个
reverse(a.begin(),a.begin()+m);
//第三次只逆转结尾m个
reverse(a.begin()+m,a.end());
return a;
}
};
二,顺时针旋转矩阵
有一个NxN整数矩阵,请编写一个算法,将矩阵顺时针旋转90度。
给定一个NxN的矩阵,和矩阵的阶数N,请返回旋转后的NxN矩阵。
数据范围:0<n<300,矩阵中的值满足 0≤val≤1000
要求:空间复杂度 O(N2),时间复杂度 O(N2)
进阶:空间复杂度 O(1),时间复杂度 O(N2)
具体做法:
- step 1:遍历矩阵的下三角矩阵,将其与上三角矩阵对应的位置互换,其实就是数组下标交换后的互换。
- step 2:遍历矩阵每一行,将每一行看成一个数组使用reverse函数翻转。
class Solution {
public:
vector<vector<int> > rotateMatrix(vector<vector<int> >& mat, int n) {
//矩阵转置
for(int i=0;i<n;i++)
{
for(int j=0;j<i;j++)
{
//交换上三角和下三角对应的元素
swap(mat[i][j],mat[j][i]);
}
}
for(int i=0;i<n;i++)
reverse(mat[i].begin(),mat[i].end());
return mat;
}
};