和为T
问题描述
从一个大小为n的整数集中选取一些元素,使得它们的和等于给定的值T。每个元素限选一次,不能一个都不选。
输入格式
第一行一个正整数n,表示整数集内元素的个数。
第二行n个整数,用空格隔开。
第三行一个整数T,表示要达到的和。输出格式
输出有若干行,每行输出一组解,即所选取的数字,按照输入中的顺序排列。
若有多组解,优先输出不包含第n个整数的;若都包含或都不包含,优先输出不包含第n-1个整数的,依次类推。
最后一行输出总方案数。样例输入
5
-7 -3 -2 5 9
0样例输出
-3 -2 5
-7 -2 9
2数据规模和约定
1<=n<=22
T<=maxlongint
集合中任意元素的和都不超过long的范围
思路:每个数都有两种状态,那就是选它,或者是不选它,我这里就用1表示选它,0表示不选它,然后深度优先搜索就行了,中间有些细节我会指出来的
先按照正常思路来
中间有个细节:**题目说了不能一个都不选,所以我用了一个flag变量来判断到底选了没有**
#include <iostream>
using namespace std;
const int N = 23;
int n, t;
//ans表示问题的解法种数
long long ans = 0;
//num存数组,num[i]为输入的数,0开始计数
//book为标记数组,1表示选过了,0表示未选,
//例如:book[i] = true 表示第i个数选了
int num[N], book[N];
//深搜下标为nowi的数
void dfs( int nowi )
{
//下标超界就来计算和
if( nowi >= n ) { //====================================<<<<<
//算和,flag判断选了没有
int sum = 0, flag = 0;
for(int i = 0; i < n; i++)
{
if( book[i] )
sum += num[i];
flag += book[i];
}
//如果一个都没选,flag肯定是=0的
if( sum == t && flag )
{
for( int i = 0; i < n; i++)
if( book[i] )
cout << num[i] << " ";
cout << endl;
ans++;
}
return; //退出
}
//枚举当前数的两种状态
for(int i = 0; i <= 1; i++)
{
//1选,0不选
book[nowi] = i;
dfs(nowi+1); //====================================<<<<<
}
}
int main()
{
cin >> n;
for ( int i = 0; i < n; ++i ) {
cin >> num[i];
}
cin >> t;
//从下标0开始搜索
dfs(0); //====================================<<<<<
cout << ans << endl;
return 0;
}
但是!!!!
题目还有说输出顺序问题!!!!!!
那我们反过来试试?从下标n-1向0搜索
正确代码:( 仔细看上下的区别哦,我用注释标出来了 )
#include <iostream>
using namespace std;
const int N = 23;
int n, t;
//ans表示问题的解法种数
long long ans = 0;
//num存数组,num[i]为输入的数,0开始计数
//book为标记数组,1表示选过了,0表示未选,
//例如:book[i] = true 表示第i个数选了
int num[N], book[N];
//深搜下标为nowi的数
void dfs( int nowi )
{
if( nowi < 0 ) { //======================================<<<
//算和,flag判断选了没有
int sum = 0, flag = 0;
for(int i = 0; i < n; i++)
{
if( book[i] )
sum += num[i];
flag += book[i];
}
//如果一个都没选,flag肯定是=0的
if( sum == t && flag )
{
for( int i = 0; i < n; i++)
if( book[i] )
cout << num[i] << " ";
cout << endl;
ans++;
}
return;
}
//枚举当前数的两种状态
for(int i = 0; i <= 1; i++)
{
//1选,0不选
book[nowi] = i;
dfs(nowi-1); //====================================<<<<<
}
}
int main()
{
cin >> n;
for ( int i = 0; i < n; ++i ) {
cin >> num[i];
}
cin >> t;
//从下标n-1开始搜索
dfs(n-1); //======================================<<<<
cout << ans << endl;
return 0;
}