布尔可满足性相关问题的复杂度分析与约简研究
一、失败文字存在性问题的规约与下界
在逻辑公式处理中,失败文字的存在性问题是一个重要的研究方向。为了完成向失败文字存在性问题的规约,我们通过向公式 (F’) 中添加子句 ((¬w ∨¬y_p))(等价于 ((w →¬y_p)))来构造公式 (F_{fl}),其中 (p \in P)。
对于公式 (F_{fl}) 中的文字 (\ell),有如下性质:
- 情况 (a) :若 (\ell = y_p)((p \in P)),且存在 (q \in Q) 使得 (pq) 满足 (F),则 (\ell) 是 (F_{fl}) 中的失败文字。这是因为根据引理 3(a),当 (p) 满足相应条件时,有 (F_{fl} ∧(y_p) \vdash_{up} (w)) 和 ((w →¬y_p))。
- 情况 (b) :否则,(\ell) 不是失败文字。证明过程分为三种情况:
1. 若 (\ell) 是负文字,由于所有子句都是非单位 Horn 子句,将所有变量赋值为 0 可满足 (F_{fl} ∧(\ell))。
2. 若 (\ell) 是正文字且不是 (y_p) 的形式,将集合 ({\ell, w} ∪{y_q : q \in Q}) 中的变量赋值为 1,其他变量赋值为 0 可满足 (F_{fl} ∧(\ell))。
3. 若 (\ell = y_p)((p \in P))且对于任意 (q \in Q),(pq) 都不满足 (F),根据引理 3(b),将 (y_p) 和所有满足 (p(C_i) = 1) 的变量 (c_i) 赋值为 1,其他变量赋值为
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



