众所周知,Python是最流行的编程语言之一,因为它简单、强大,也使它越来越流行,大家可以免费构建软件、开发Web服务、执行数据分析和可视化等等,那么在Python语言中常用的工具有哪些呢?以下是详细的内容:
【Python开发工具】
1、Jupyter Notebook
Jupyter Notebook是一个基于Web的IDE,用于试验代码并显示结果。它在数据科学家和机器学习从业者中相当受欢迎。它允许他们运行和测试一小组代码并查看结果,而不是运行整个文件。
当你把科学计算和Python开发结合起来时,你就得到了一个Jupyter笔记本。如今,教师们正在使用它来教授数据科学课程,数据分析师们正在使用它来创建报告,机器学习工程师们正在使用实验和构建高性能的模型架构。
2、Pip
Pip是一个使用Python包索引来安装和管理Python软件的工具。有393,343个项目供您下载和安装与闪电般的速度。
3、VSCode
Visual Studio Code是免费的、轻量级的、功能强大的代码编辑器。您可以构建、测试、部署和维护所有类型的应用程序,而无需离开软件窗口。它提供语法高亮显示、代码自动完成、语言、Git和内联调试支持。您可以使用扩展来预构建系统并将应用程序部署到云中。
VSCode是目前世界上最流行的IDE,它的流行主要得益于提升用户体验的免费扩展。这些扩展允许数据科学家在Jupyter笔记本上运行实验、编辑markdown文件、集成SQL Server、在项目上协作、自动完成代码和内联代码帮助。不需要使用多个软件,您可以使用扩展并运行来自VSCode软件的所有东西,如bash终端和浏览器。
【Python网页抓取工具】
1、Requests
Requests使您可以轻松发送HTTP请求。您可以简单地使用API和getJSON方法,而不必手动向URL添加身份验证、参数和配置查询字符串。Requests是数据专业人士中非常流行的用于抓取多页网站的库。
2、Beautiful Soup
Beautiful Soup用于清理和提取HTML和XLM中的数据。
它用于解析HTML文本,并允许数据科学家将文本数据转换为结构化数据,只需几行代码,就可以提取复杂的HTML数据。在某些情况下,您只需要一个表标签,并且可以访问整个数据,而无需解析文本。
3、Scrapy
Scrapy是一个开源的协作框架,用于网页抓取和网页抓取。它在爬取多个页面的网站以提取结构化格式的数据时快速、简单且可扩展。它通常用于数据挖掘、监控和自动化测试。