射影几何----二次曲线三角形调和定理的应用,圆锥曲线内接焦点三角形定理的证明【原创】

本文深入探讨了二次曲线的调和定理,通过分析A点处的切线GH和法线AD’的关系,结合圆锥曲线的光学性质,揭示了角BAD'等于角CAD'的原理,进一步说明了在特定条件下,A点处的法线和切线及另一切线三线共点的几何特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

根据二次曲线三角形调和定理

A(BC,GD)=-1

设A点处的切线为GH,法线为AD’

又因为圆锥曲线的光学性质

角BAD'=角CAD'

AD垂直于GH

也就是AD'是角BAC的内角平分线

GH是角BAC的外角平分线

所以A(BC,GD')=-1

所以AD和AD‘重合

既是A点处的法线和B处切线和C处切线三线共点。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值