【传统算法】导向滤波公式推导和扩展

本文详细探讨了导向滤波的理论基础,包括一般表达式、先验假设、能量函数的求解,以及与线性回归的关系。在扩展部分,介绍了如何简化计算和滤波核的计算方法,并讨论了高斯导向滤波与Gradient-preserving特性,揭示了其在保持图像边缘信息方面的优势。
摘要由CSDN通过智能技术生成

何凯明大神的代表作之一
论文地址:Guided Image Filtering

导向滤波的一般表达方式

q i = ∑ j W i j ( I ) p j q_{i}=\sum_{j} W_{i j}(I) p_{j} qi=jWij(I)pj
其中 q q q表示输出, p p p表示输入, I I I表示导向图。

先验假设

假设在局部范围内,输出图与导向图的关系可以用一个线性模型表示:
q i = a k I i + b k , ∀ i ∈ ω k q_{i}=a_{k} I_{i}+b_{k}, \forall i \in \omega_{k} qi=akIi+bk,iωk
另外输出图是由输入图减去噪声(需要被滤掉的部分)得到
q i = p i − n i q_{i}=p_{i}-n_{i} qi=pini

能量函数和求解

我们需要做的就是最小化能量函数
E ( a k , b k ) = ∑ i ∈ ω k ( ( a k I i + b k − p i ) 2 + ϵ a k 2 ) E\left(a_{k}, b_{k}\right)=\sum_{i \in \omega_{k}}\left(\left(a_{k} I_{i}+b_{k}-p_{i}\right)^{2}+\epsilon a_{k}^{2}\right) E(ak,bk)=iωk((akIi+bkpi)2+ϵak2)
其中 ϵ \epsilon ϵ为正则项,防止系数 a k a_k ak过大。
a k a_k ak b k b_k bk求导:
∂ E ∂ a k = 2 ∑ i N ( ( − p i + a k I i + b k ) I i + ϵ a k ) \frac{\partial E}{\partial a_{k}}=2 \sum_{i}^{N}\left(\left(-p_{i}+a_{k} I_{i}+b_{k}\right) I_{i}+\epsilon a_{k}\right) akE=2iN((pi+akIi+bk)Ii+ϵak)
∂ E ∂ b k = − 2 ∑ i N ( p i − a k I i − b k ) \frac{\partial E}{\partial b_{k}}=-2 \sum_{i}^{N}\left(p_{i}-a_{k} I_{i}-b_{k}\right) bkE=2iN(piakIibk)
先求取 b k b_k bk,令偏导数为零:
0 = ∑ i N ( p i − a k I i − b k ) ⇒ N b k = ∑ i N ( p i − a k I i ) ⇒ b k = 1 N ∑ i N ( p i − a k I i ) ⇒ b k = 1 N ∑ i N p i − a k 1 N ∑ i N I i ⇒ b k = p k ˉ − a k μ k \begin{aligned} &0= \sum_{i}^{N}\left(p_{i}-a_{k} I_{i}-b_{k}\right)\\ &\Rightarrow N b_{k}=\sum_{i}^{N}\left(p_{i}-a_{k} I_{i}\right)\\ &\Rightarrow b_{k}=\frac{1}{N} \sum_{i}^{N}\left(p_{i}-a_{k} I_{i}\right)\\ &\Rightarrow b_{k}=\frac{1}{N} \sum_{i}^{N} p_{i}-a_{k} \frac{1}{N} \sum_{i}^{N} I_{i} \\ &\Rightarrow b_{k}= \bar{p_{k}}-a_{k} \mu_{k} \end{aligned} 0=iN(piakIibk)Nbk=iN(piakIi)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值