- 博客(16)
- 收藏
- 关注
原创 智能拖拉机环境中的多类别车辆检测与识别_mask-rcnn改进模型解析
本文详细介绍了一种改进的Mask R-CNN模型在智能拖拉机环境中的多类别车辆检测与识别应用。通过引入自适应特征融合模块、注意力机制和优化的损失函数,我们显著提升了模型在复杂农田环境中的检测性能。实验结果表明,改进模型在准确率和实时性方面都达到了实用化要求,为智能拖拉机的发展提供了技术支持。未来,我们将继续探索更先进的深度学习技术,进一步提升智能农机系统的环境感知能力,为实现智慧农业的宏伟目标贡献力量!🌱🚜💪。
2026-01-12 10:22:07
638
原创 yolov10n_HWD_方向手势识别_上下手势检测
本文介绍了一种基于YOLOv10n的HWD方向手势识别系统,专注于上下手势检测。该系统采用轻量级YOLOv10n模型,结合HWD特征提取模块,实现了95%以上的识别准确率,推理时间仅12ms。项目通过数据增强、模型剪枝和量化等优化技术,在多种场景下保持稳定性能。该系统可应用于智能家居、医疗健康等领域,支持无接触交互。未来计划扩展手势类别并优化移动端部署。
2026-01-12 09:57:43
842
原创 YOLOV8-AFPN-P2345火箭目标检测与识别原创
本文提出了一种改进的YOLOV8-AFPN-P2345模型用于火箭目标检测。针对火箭目标形态变化大、背景复杂等特点,设计了自适应特征金字塔网络(AFPN)和P2345检测头,优化了多尺度特征融合和长宽比感知能力。实验表明,该模型在mAP指标上比原始YOLOV8提升7.2%,达到89.5%,尤其对远景小目标检测效果显著。消融实验验证了各改进模块的有效性。该系统为火箭发射场景提供了一种高精度、实时的目标检测解决方案。
2026-01-09 08:59:06
763
原创 【RoboMaster】基于YOLOv8-SRFD的机器人视觉目标检测实战指南
本文介绍了基于YOLOv8-SRFD的机器人视觉目标检测系统在RoboMaster竞赛中的应用。YOLOv8-SRFD针对比赛场景优化了特征提取网络,通过改进的CSPDarknet结构、特征金字塔网络和注意力机制,显著提升了小目标和旋转目标的检测精度。文章详细解析了网络架构、训练策略和部署方法,包括数据增强、损失函数设计和TensorRT优化。实验表明,该模型在保持实时性的同时(mAP 0.902,Jetson Xavier上30FPS),相比原版YOLOv8在小目标检测上提升了8.9%,为RoboMast
2026-01-09 08:37:27
550
原创 【深度学习】基于 Faster-RCNN 和 ResNet50 的铁路隧道仰坡排水沟病害识别系统
本文提出了一种基于Faster-RCNN和ResNet50的铁路隧道仰坡排水沟病害识别系统。该系统通过深度学习技术实现自动化检测,显著提升了传统人工检测的效率与准确性。系统采用端到端设计,包含图像采集、预处理、病害检测和结果可视化四个模块。使用5000张专业标注的铁路隧道图像构建数据集,涵盖6种常见病害类型。实验结果表明,改进后的Faster-RCNN+ResNet50模型在mAP@0.5指标达到0.924,检测速度达18.3帧/秒,优于传统方法。实际应用显示系统可将检测时间从1天缩短至10分钟,准确率提升
2026-01-08 19:23:00
930
原创 【深度学习】基于YOLOv8-seg的水稻叶部病害识别系统RCSOSA研究
本文提出了一种基于YOLOv8-seg的水稻叶部病害识别系统RCSOSA,通过优化模型架构和改进训练策略,实现了对水稻叶部病害的高精度检测与分割。系统采用GhostC3模块减少参数量,引入CBAM注意力机制增强特征表达能力,并使用Wise-IOU损失函数解决样本不平衡问题。实验表明,RCSOSA在mAP@0.5指标上达到0.912,优于主流对比模型,同时保持了较低的参数量和较快的推理速度。该系统支持云端、边缘计算和本地部署,为农业智能化管理提供了有效解决方案。
2026-01-08 18:59:39
680
原创 YOLO13-C3k2-gConv实战:瓦螨检测与识别模型优化与部署
本文提出了一种基于改进YOLO13架构的瓦螨检测系统,通过引入C3k2模块和gConv注意力机制优化模型性能。文章详细介绍了模型架构设计、数据集构建、训练优化及部署应用的全过程。实验结果表明,该方法在保持高效推理速度的同时,显著提升了瓦螨检测精度,为农业害虫智能检测提供了有效解决方案。
2026-01-06 09:19:01
811
原创 蘑菇种类智能识别:基于YOLO11-C2PSA模型的Mona数据集分类实践与性能优化
本文提出了一种基于YOLO11-C2PSA模型的蘑菇种类智能识别系统。该系统采用改进的YOLO11架构,结合C2PSA注意力机制和Mona模块,在Mona数据集(包含20类15,000张蘑菇图像)上实现了91.3%的mAP@0.5准确率。研究详细介绍了数据预处理、模型优化策略和性能评估,并展示了系统在智能农业、野生蘑菇识别等实际应用场景中的效果。实验结果表明,该方法在识别精度和推理速度上均优于传统方法,为解决蘑菇识别中的小目标检测、相似种类区分等难题提供了有效方案。
2026-01-06 08:38:23
770
原创 手机和镜头检测识别:Point-Rend模型训练与优化
本文介绍了基于Point-Rend模型的手机和镜头检测识别方法。首先阐述了OpenCV在图像预处理中的应用,包括边缘检测、亮度提升、角点检测等基础技术。重点讲解了Point-Rend模型的原理和网络结构,详细说明了数据收集、增强及模型训练优化的完整流程。实验部分对比了基线模型性能,通过消融实验验证了各模块的有效性。最后探讨了移动端部署和实时检测系统的实现方案。该方法结合传统计算机视觉技术与深度学习,为手机和镜头识别提供了高效解决方案。
2026-01-05 15:24:07
589
原创 使用Mask-RCNN与RegNetX-8GF实现微藻检测与识别
本文详细介绍了一种基于Mask R-CNN和RegNetX-8GF的微藻检测与识别系统。该系统结合了先进的深度学习模型和微藻领域知识,实现了对微藻的高效检测和准确识别。实验结果表明,系统在检测精度和推理速度方面均表现优异,具有广阔的应用前景。通过推广链接,您可以获取更多关于微藻检测技术的详细信息。我们期待这项技术能够为微藻研究和应用提供有力支持,推动相关领域的创新发展。Mask-RCNN是一种强大的实例分割算法,它在 Faster R-CNN 的基础上增加了分支用于生成每个检测对象的掩码。
2026-01-05 14:48:20
985
原创 YOLOv8_HSPAN_DySample工业零部件分类识别实战教程
本文提出了一种改进的YOLOv8_HSPAN_DySample算法,用于解决工业零件检测中的复杂背景干扰、小目标识别和样本不平衡等问题。通过引入多层次空间注意力机制(HSPAN)和动态采样策略(DySample),算法显著提升了检测精度,mAP达到92.6%,比原始YOLOv8提高5.8个百分点,同时保持45FPS的实时性能。实验表明,该算法特别提升了小目标零件检测精度4.3个百分点。轻量化后的模型(5.3MB)已成功部署到工业质检系统,实现每小时3600个零件的检测,准确率98.5%。该技术为工业自动化质
2026-01-03 12:57:09
843
原创 基于Mask R-CNN和RegNetX-4GF的心脏磁共振图像心室心肌分割系统深度学习模型实现
本文提出了一种基于Mask R-CNN和RegNetX-4GF的心脏磁共振图像心室心肌分割系统。该系统采用模块化设计,包含数据预处理、模型训练、可视化及评估模块。通过3D图像处理、归一化和高斯滤波等预处理方法提高数据质量,并利用迁移学习策略优化模型性能。实验表明,该系统在左心室分割上达到0.92的Dice系数,相比基准模型提升显著。消融实验验证了RegNetX-4GF骨干网络和边界加权损失函数的有效性,为临床心脏影像分析提供了高效解决方案。
2026-01-03 12:17:53
534
原创 YOLO11-FCM_老年人跌倒检测算法实现与优化
YOLO11(You Only Look Once)是一种单阶段目标检测算法,以其高速度和良好平衡的精度而闻名。与传统的两阶段检测器不同,YOLO11直接从图像中预测边界框和类别概率,无需生成区域提议。这种端到端的设计使得YOLO11在实时检测任务中表现出色。YOLO11的核心创新点在于其网络结构设计,通过引入多尺度特征融合和跨阶段部分连接(CSP)结构,有效解决了深层网络中的梯度消失问题,同时保持了计算效率。
2025-12-30 12:54:54
1304
原创 YOLOv10n-EMBSFPN-SC模型_温室大棚蔬菜叶片与幼果智能识别系统
本文介绍了YOLOv10n-EMBSFPN-SC模型在温室蔬菜识别中的应用。该模型通过EMBSFPN-SC特征金字塔优化和Shift Channel Mix注意力机制,显著提升了叶片和幼果的检测精度。系统采用组件化设计和多线程架构,提供可视化训练界面,支持实时监控训练过程。实验表明,该模型能有效适应温室复杂环境,为精准农业提供技术支持。
2025-12-25 20:31:34
1010
原创 游轮目标检测YOLO13-C3k2-ConvAttn模型改进与应用
本文提出了一种改进的YOLOv13-C3k2-ConvAttn模型用于游轮目标检测。该模型通过引入C3k2模块和ConvAttn注意力机制,在保持实时性的同时显著提升了检测精度。实验表明,改进后的模型在游轮数据集上的mAP达到92.6%,比原始YOLOv13提升7.3个百分点,尤其改善了小型游轮的检测性能。文章详细阐述了模型架构、训练优化策略及实际部署应用,为海洋安全和船舶监控提供了有效的技术解决方案。
2025-12-25 19:59:08
970
原创 性能分析工具_CPU_采样分析器_perf_掀开Linux_perf性能分析的神秘面纱
本文介绍了Linux性能分析工具perf的功能与应用。perf作为Linux内核集成的性能分析工具,可用于检测系统性能问题,支持硬件计数器、内核和用户级事件监控。文章详细讲解了perf的核心命令(list/stat/record/report等)及实际应用场景(CPU/内存/IO分析),并展示了如何生成火焰图进行可视化分析。此外还涵盖perf的高级技巧、常见问题解决方法,并与其他性能工具进行对比。掌握perf对Linux用户优化系统性能、定位瓶颈具有重要意义。
2025-11-27 15:19:06
388
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅