权威发布 | 项目申报启动!芝诺数据入选2023年教育部产学合作协同育人项目企业名单...

633a42a74c278a4e2f4f8baebe4f5bcc.gif

点击蓝字,关注我们

2023年10月25日,教育部产学合作协同育人项目专家组发布《关于公布教育部产学合作协同育人项目指南通过企业名单(2023年7月)的通知》,芝诺数据申报的新工科建设项目、教学内容和课程体系改革项目、师资培训项目、实践条件和实践基地建设项目、创新创业教育改革项目五大类共65项成功入选,公示原文如下:

33fcab00d9be86b51807010d32a4b24f.png

附件:

4e0756bb050c671a6865af3c3fbdce88.png

校企共育高“智”更高“质”

535cabc14307bfc4e90c73a42c5d0189.jpeg

又一个重庆市市级研究生联合培养基地获批!

75ba6e164363111367e06c38bcde4e9f.jpeg

芝数云|支撑数字化人才培养进行时

24196721af8025c895d395ca63d1545c.png

⭐ 芝 · 诺 · 资 · 质 ⭐

国家高新技术企业

国家科技型中小企业

中国政府统计研究中心数字化人才培养基地

工业和信息化职业技能提升行动工作委员会会员单位

2022年度重庆市重点软件和信息服务企业

重庆市创新型中小企业

2022、2021重庆市民营企业社会责任百强企业

软件企业

软件服务商交付能力证书

重庆市首批产教融合型企业

2023、2022年重庆市数字经济产业发展试点示范项目企业

2023、2022重庆市数字经济产业发展项目库项目企业

大渡口区巴渝工匠乡村驿站单位

大渡口区担当作为先进集体

大渡口区劳动保障守法诚信企业

大渡口区创新人才服务基地

中国大数据产业生态联盟会员单位

中国商业统计学会数据科学与商业智能分会常务理事单位

中国卫生信息与健康医疗大数据学会中医药专委会委员

重庆市云计算和大数据产业协会产教融合专业委员会副主任委员单位

重庆市无人系统产业技术创新战略联盟副理事长单位

中共重庆移动互联网产业园大数据支部委员会

重庆大数据产业技术创新联盟副理事会单位

重庆市软件行业协会第二届监事会监事单位

重庆市大渡口区互联网界联合会副会长单位

重庆市云计算和大数据产业协会监事单位

重庆市数据科学与应用学会常务理事单位

重庆市科技装备业商会第一届会员单位

重庆市安全生产综合服务平台研发基地

重庆市互联网联合会会员单位

重庆市广东茂名商会会员单位

重庆市制造业设计培训基地

重庆市青年商会会员单位

重庆市软件行业协会会员单位

重庆股份转让中心科创板挂牌企业

信息安全领域的管理体系认证 ISO27001

环境管理体系认证 ISO14001

质量管理体系认证 ISO9001

⭐ 实 · 习 · 实 · 训 · 基 · 地 ⭐

复旦大学虚拟仿真实训基地

重庆大学产学研合作基地

东华理工大学人工智能实训基地

南昌大学数据工程实训基地

西南大学大数据实训基地

河南大学大数据人才实训基地

河南大学人工智能实践基地

江西财经大学数据工程人才培养基地

河南理工大学特性研究实训基地

重庆邮电大学科学计算实训基地

重庆邮电大学人工智能实训基地

重庆师范大学-重庆芝诺大数据有限公司研究生联合培养基地

重庆师范大学实践教学基地

天津财经大学数据工程实训基地

重庆交通大学科学计算实践教学基地

重庆交通大学移动端应用实践基地

重庆交通大学大数据人才实训基地

重庆理工大学-重庆芝诺大数据有限公司电子信息(计算机技术)研究生联合培养基地

重庆理工大学大数据人才实践培养基地

重庆理工大学计算机视觉智能技术工程研究中心

重庆理工大学大数据研发基地

贵州师范大学创新创业培训基地

重庆工商大学产学研合作基地

重庆工商大学融智学院产教融合基地

河南财经政法大学新工科创新实训基地

广西财经学院大数据人才实践培训基地

重庆科技学院产学研合作基地

重庆文理学院金融数学示范性实践教学基地

长江师范学院统计调查与数据计算实训基地

长江师范学院大数据人才实训基地

重庆第二师范学院实践教学基地

重庆工程学院专创融合创新创业实训基地

重庆商务职业学院大数据智能化校企合作实践基地

<think>好的,用户提到对《C Primer Plus》中的程序清单6.14 zeno.c没看懂,需要详细解释。我需要先回忆这个程序的内容。记得zeno.c是关于芝诺悖论的,可能涉及到无限逼近某个值的情况,比如阿基里斯和乌龟的悖论,或者用循环来计算分数相加的和,比如1/2 + 1/4 + 1/8...这样的几何级数。 首先,我需要确认这个程序的具体代码结构。假设该程序使用循环来计算一个几何级数的和,直到达到一定次数,或者直到变化量足够小。例如,可能初始化一个变量为某个值,然后在每次循环中加上当前项,直到某个条件满足。 接下来,我需要分步骤解释程序的各个部分。可能包括变量声明、循环结构、累加过程以及输出结果。例如,程序中可能有类似这样的结构: int main(void) { int t_ct; // 项数计数器 double time, x; int limit; printf("Enter the number of terms you want: "); scanf("%d", &limit); for (time=0, x=1, t_ct=1; t_ct <= limit; t_ct++) { time += x; x *= 0.5; printf("time = %f when terms = %d.\n", time, t_ct); } return 0; } 这个程序的作用是计算累加的和,每次加上当前项,其中每一项是前一项的一半,例如第一项是1,第二项是0.5,第三项是0.25,依此类推。循环的次数由用户输入的limit决定,每次循环都会输出当前的累加和以及项数。 现在需要解释每一部分的代码。首先,变量声明:time用来存储累加的和,x是当前项的值,初始化为1,t_ct是计数器,limit是用户输入的项数。 在for循环中,初始化三个部分:time=0(初始和为0),x=1(初始项为1),t_ct=1(计数器从1开始)。循环条件为t_ct <= limit,即循环执行limit次。每次循环中,time增加x的值,然后x乘以0.5,即下一项是当前的一半。最后打印当前的time和项数。 这个程序实际上是在模拟芝诺悖论中的无限分割过程,但数上这个级数的和是收敛于2的。随着项数的增加,time会趋近于2。例如,当limit=10时,time的值会接近2,但永远不会超过2。 用户可能不理解的地方在于循环的结构,比如for循环中的初始化部分有三个变量,以及x每次乘以0.5的操作。此外,可能对程序的输出结果如何逼近某个固定值(如2)感到困惑,或者对芝诺悖论与程序的关系不太清楚。 在解释时,需要强调循环如何一步步累加,每次项的值减半,总和逐渐接近2的过程。同时,可以指出数上的无穷级数和是2,但程序只能计算有限项的和,因此结果会随着项数的增加越来越接近2,但不会达到2。 最后,按照用户的要求,提出相关问题,这些问题应该围绕循环结构、变量作用、数概念等方面展开,确保问题与程序相关,并且帮助用户深入理解。</think><< 程序清单6.14 zeno.c是《C Primer Plus》中演示循环与数悖论的经典案例。以下是完整代码和逐行解析: ```c #include <stdio.h> int main(void) { int t_ct; // 项计数器 double time, x; // 累计时间和当前项值 int limit; // 用户指定的项数 printf("Enter the number of terms you want: "); scanf("%d", &limit); for (time=0, x=1, t_ct=1; t_ct <= limit; t_ct++) { time += x; // 累加当前项 x *= 0.5; // 计算下一项的值 printf("time = %f when terms = %d.\n", time, t_ct); } return 0; } ``` 运行示例: 输入5时输出: time = 1.000000 when terms = 1 time = 1.500000 when terms = 2 time = 1.750000 when terms = 3 time = 1.875000 when terms = 4 time = 1.937500 when terms = 5 程序原理: 1. 模拟芝诺悖论中的无限分割过程(每次移动剩余距离的一半) 2.本质是计算几何级数:1 + 1/2 + 1/4 + 1/8 + ... 3. 级数收敛于2,但程序只能计算有限项的和 关键点解释: - 复合初始化:`time=0, x=1, t_ct=1` 同时初始化三个变量 - 累加逻辑:每次循环将当前项x加到time,然后将x减半 - 循环控制:用户指定的limit决定计算精度 - 数特性:当项数趋近无穷时,time将无限接近2但永远不会等于2 这个程序演示了: - for循环的多变量初始化 - 复合赋值运算符(+=, *=)的使用 - 浮点数运算的精度累积 - 有限计算与数无限过程的对比 >>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值