自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(260)
  • 收藏
  • 关注

原创 Linux下的GCC编译器工具集成

1.GCC简介文件扩展名:*.c:该类文件为C语言的源文件*.h:该类文件为C语言的头文件*.i:该类文件为预处理后的C文件*.cc:该类文件为C++语言的源文件*.cpp:该类文件为C++语言的源文件*.s:该类文件为汇编语言的源文件*.o:该类文件为汇编后的目标文件*.a:该类文件为静态库*.so:该类文件为共享库a.out:该类文件为链接后的输出文...

2018-12-20 14:52:48 1268

转载 Linux正则表达式grep

正则表达式是一种符号表示法,用于识别文本模式。Linux处理正则表达式的主要程序是grep。grep搜索与正则表达式匹配的行,并将结果输送至标准输出。1. grep匹配模式grep按下述方式接受选项和参数(其中,regex表示正则表达式)1grep [options] regex [files]

2017-06-19 17:49:12 220

转载 Maven之(六)setting.xml配置文件详解

setting.xml配置文件maven的配置文件settings.xml存在于两个地方:1.安装的地方:${M2_HOME}/conf/settings.xml2.用户的目录:${user.home}/.m2/settings.xml前者又被叫做全局配置,对操作系统的所有使用者生效;后者被称为用户配置,只对当前操作系统的使用者生效。如果两者都存在,它们的内容将被合

2017-06-09 17:52:23 248

转载 Maven2的配置文件settings.xml

简介:概览当Maven运行过程中的各种配置,例如pom.xml,不想绑定到一个固定的project或者要分配给用户时,我们使用settings.xml中的settings元素来确定这些配置。这包含了本地仓库位置,远程仓库服务器以及认证信息等。settings.xml存在于两个地方:1.安装的地方:$M2_HOME/conf/settings.xml2.用户的

2017-06-09 17:51:59 285

转载 JVM 监控以及内存分析

1 内存分析1.1 jmap -histo 命令pid=`jps | awk '{if ($2 == "Jps") print $1}'`jmap -histo $pid >>1.txt 查看pid中类的内存占用num     #instances(实例数)         #bytes(占用字节)  class name class name 解读B代表byte C代

2017-06-09 17:51:17 186

转载 jstat命令详解

Jstat是JDK自带的一个轻量级小工具。全称“Java Virtual Machine statistics monitoring tool”,它位于Java的bin目录下,主要利用JVM内建的指令对Java应用程序的资源和性能进行实时的命令行的监控,包括了对Heap size和垃圾回收状况的监控。可见,Jstat是轻量级的、专门针对JVM的工具,非常适用。jstat工具特别强大,有

2017-06-09 17:49:58 778

转载 JVM调优:选择合适的GC collector (一)

正文之前,先介绍一人:Jon Masamitsu。此人背景不详,不过他在SUN做的就是JVM,所以他的blog我认为是每一个想对JVM调优的人都应该读一读的。本文的很多观点和一些图也是取自他的blog。blog link:http://blogs.sun.com/jonthecollector/ 在他的一篇blog【1】中,写到了GC调优的最重要的三个选项:排在第三位的是young

2017-06-09 17:49:26 527

转载 Shallow heap & Retained heap

所有包含Heap Profling功能的工具(MAT, Yourkit, JProfiler, TPTP等)都会使用到两个名词,一个是Shallow Size,另一个是 Retained Size. 这是两个在平时不太常见的名词,本文会对这两个名词做一个详细的解释。 Shallow Size 对象自身占用的内存大小,不包括它引用的对象。 针对非数组类型的对象,它的大小就是对象与

2017-06-09 17:42:55 127

转载 BP算法浅谈(Error Back-propagation)

最近在打基础,大致都和向量有关,从比较基础的人工智能常用算法开始,以下是对BP算法研究的一个小节。      本文只是自我思路的整理,其中举了个例子,已经对一些难懂的地方做了解释,有兴趣恰好学到人工智能对这块不能深入理解的,可以参考本文。      因为大部分涉及公式,我就直接贴图了,请谅解,如果需要全文可以联系@梁斌penny 谢谢。

2017-06-08 14:28:18 646

转载 一文弄懂神经网络中的反向传播法——BackPropagation

最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果

2017-06-08 14:25:18 305

转载 通俗理解神经网络BP传播算法

在学习深度学习相关知识,无疑都是从神经网络开始入手,在神经网络对参数的学习算法bp算法,接触了很多次,每一次查找资料学习,都有着似懂非懂的感觉,这次趁着思路比较清楚,也为了能够让一些像我一样疲于各种查找资料,却依然懵懵懂懂的孩子们理解,参考了梁斌老师的博客BP算法浅谈(Error Back-propagation)(为了验证梁老师的结果和自己是否正确,自己python实现的初始数据和梁老师定义

2017-06-08 12:10:13 210

转载 [转]反向传播算法BP (弄懂为什么是反向而不是正向)

作者:匿名用户链接:https://www.zhihu.com/question/27239198/answer/89853077来源:知乎著作权归作者所有,转载请联系作者获得授权。BackPropagation算法是多层神经网络的训练中举足轻重的算法。简单的理解,它的确就是复合函数的链式法则,但其在实际运算中的意义比链式法则要大的多。要回答题主这个问题“如何直观的

2017-06-08 11:10:22 753

转载 从NN到RNN再到LSTM(3): 长短时记忆LSTM简介及计算

本文将简要介绍RNN存在的梯度消失和梯度爆炸问题,然后介绍长短时记忆(Long Short-Term memory,LSTM)的相关公式及推导过程。转载请注明出处:http://blog.csdn.net/u011414416/article/details/46724699以下内容主要引自Alex Graves写的Supervised Sequence Labelling wi

2017-06-08 10:12:50 137

转载 [译] 理解 LSTM 网络

本文译自 Christopher Olah 的博文Recurrent Neural Networks人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义。我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考。我们的思想拥有持久性。传统的神经网络并不能做到这点,看起来也像是一种巨大的弊端。例

2017-06-08 10:10:40 148

转载 RNN以及LSTM的介绍和公式梳理

前言好久没用正儿八经地写博客了,csdn居然也有了markdown的编辑器了,最近花了不少时间看RNN以及LSTM的论文,在组内『夜校』分享过了,再在这里总结一下发出来吧,按照我讲解的思路,理解RNN以及LSTM的算法流程并推导一遍应该是没有问题的。RNN最近做出了很多非常漂亮的成果,比如Alex Graves的手写文字生成、名声大振的『根据图片生成描述文字』、输出类似训练语料的文

2017-06-08 10:09:53 176

转载 Word2Vec概述与基于Hierarchical Softmax的CBOW和Skip-gram模型公式推导

该文档是我在《Word2Vec_中的数学原理详解》基础上做的总结和一些新的描述,增加了代码与公式的对照和公式总汇(公式太多,汇总下看起来更方便),可以更加方便的加深对代码和公式理解。既然是总结,则一些很基础的知识我没有写到,如果里面的有些概念不熟悉,也可以自己查一下,网上资料还是很多的。本笔记主要是对《Word2Vec中的数学原理详解》的总结和补充,目的是加深自己的理解和认识。 1、概

2017-05-23 21:01:33 224

转载 word2vec原理及实现

word2vec内容源自对论文的理解。Introduction字词的向量空间模型依靠将语意相近的词语聚在一起来提高自然语言处理的表现。比如训练集中可能会有句子1.the dog is walking和句子2.the cat is walking。很明显因为dog和cat的 上下文(context) 的概率分布很相似,出现dog的句子中,将dog换成cat也很有可能得到一个合

2017-05-23 21:00:59 290

转载 卷积神经网络(CNN)学习笔记1:基础入门

概述卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的。CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的前期预处理过程(提取人工特征等),可以直接输入原始图像。图像处理中,往往会将图像看成是一个或

2017-05-21 18:40:22 264

转载 卷积神经网络(CNN)学习笔记2:模型训练

上篇博文主要对CNN的基本网络结构及连接方式做了简单的介绍,还介绍了一个界内经典的LeNet-5模型。下面重点介绍CNN模型的训练过程/参数学习,在阅读本文之前,最好需要有以下方面的预备知识:神经网络基础(网络结构,前向/后向传播方式,激活函数等);基础的最优化求解方法(梯度法,牛顿法等);机器学习基础神经网络模型常用于处理有监督学习的问题,例如分类问题,CNN也不例外。模型需要一

2017-05-21 18:39:04 938

转载 TensorFlow学习笔记2:构建CNN模型

上篇博文主要是TensorFlow的一个简单入门,并介绍了如何实现Softmax Regression模型,来对MNIST数据集中的数字手写体进行识别。然而,由于Softmax Regression模型相对简单,所以最终的识别准确率并不高。下面将针对MNIST数据集构建更加复杂精巧的模型,以进一步提高识别准确率。深度学习模型TensorFlow很适合用来进行大规模的

2017-05-21 18:36:23 215

转载 Deep Learning(深度学习)学习笔记整理系列之(七)

Deep Learning(深度学习)学习笔记整理系列zouxy09@qq.comhttp://blog.csdn.net/zouxy09作者:Zouxyversion 1.0 2013-04-08声明:1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看参考文献。具体的版本声明也参考原文献。

2017-05-21 18:35:37 383

转载 TensorFlow学习笔记1:入门

TensorFlow 简介TensorFlow是Google在2015年11月份开源的人工智能系统(Github项目地址),是之前所开发的深度学习基础架构DistBelief的改进版本,该系统可以被用于语音识别、图片识别等多个领域。官网上对TensorFlow的介绍是,一个使用数据流图(data flow graphs)技术来进行数值计算的开源软件库。数据流图中的节点,代表数值运算

2017-05-21 16:53:43 267

转载 Hadoop学习笔记二---HDFS

HDFS的概念1、数据块     HDFS跟磁盘一样也有块的概念,磁盘上块的大小一般为512字节,而文件系统的块则一般是磁盘块的整数倍,比如我当前centos块的大小事4096 也就是4K,而HDFS块的大小由参数dfs.block.size 设定默认是64M,但是与单一磁盘文件系统相似,HDFS上的文件也被分为块大小的多个分块(chunk)。     为什么HDFS中的块如此之大?

2017-05-15 14:44:23 208

转载 Hadoop学习笔记: HDFS

注:该文内容部分来源于ChinaHadoop.cn上的hadoop视频教程。一. HDFS概述HDFS即Hadoop Distributed File System, 源于Google发表于2003年的论文,是一种分布式的文件系统。HDFS优点:高容错性(数据自动保存多个副本)适合批处理适合大数据处理流式文件访问(一次性写入,多次读取)建立在廉价机器上HDF

2017-05-15 14:43:55 196

转载 Hadoop学习笔记:MapReduce框架详解

开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密。这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解hadoop框架

2017-05-15 14:43:22 168

转载 HBase笔记:对HBase原理的简单理解

早些时候学习hadoop的技术,我一直对里面两项技术倍感困惑,一个是zookeeper,一个就是Hbase了。现在有机会专职做大数据相关的项目,终于看到了HBase实战的项目,也因此有机会搞懂Hbase原理。  首先来点实在的东西,假如我们已经在服务器上部署好了Hbase应用,作为客户端或者说的具体点,本地开发环境如何编写程序和服务端的Hbase进行交互了?  下面我将展示这些,首

2017-05-15 14:41:14 381

转载 HBase 深入浅出

HBase 在大数据生态圈中的位置提到大数据的存储,大多数人首先联想到的是 Hadoop 和 Hadoop 中的 HDFS 模块。大家熟知的 Spark、以及 Hadoop 的 MapReduce,可以理解为一种计算框架。而 HDFS,我们可以认为是为计算框架服务的存储层。因此不管是 Spark 还是 MapReduce,都需要使用 HDFS 作为默认的持久化存储层。那么 HBase 又是

2017-05-15 14:33:20 486

转载 HBASE SHELL 常用命令

说明:新版Hbase取消了对HQL的支持,只能使用shell 命令:disable 'tableName' --disable表。注:修改表结构时,必须要先disable表。命令:enable 'tableName' --使表可用命令:drop 'tableName' --删除表 HBase基本命令下面我们再看看看HBase的一些基本操作命令,我列出了几个常用的

2017-05-15 14:29:25 173

转载 BigTable/HBase基本概念解读 & Hbase shell常用命令

BigTable是Key/Value数据库的元老之一。作为Google平台的主要部件,它相对于其他的K-V store较为复杂。在BigTable论文中,是这样定义的:A Bigtable is a sparse, distributed, persistent multidimensional sorted map.进一步解释如下:The map

2017-05-15 14:28:36 380

转载 Hbase表的结构

逻辑视图Hbase以表的形式存储数据。表有行和列组成。列划分为若干个列族(row family)Row Keycolumn-family1column-family2column-family3column1column1column1column2column3column1key1t1:abct

2017-05-15 14:27:57 281

转载 机器学习算法常用指标总结

阅读目录1. TPR、FPR&TNR2. 精确率Precision、召回率Recall和F1值3. 综合评价指标F-measure4. ROC曲线和AUC5. 参考内容  考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True posi

2017-05-05 14:45:32 175

转载 Java 互联网工程师要具备哪些技能或技术?

谢邀,首先你确定你要进入Java开发?决定学习Java是要下很大决心的,因为Java技术的世界是个无底洞,永远也学不完,不废话了,我就简单的说一下自己的看法(偏重Java方面,什么html、css、js这些不在这次的讨论之内,虽然JavaServer开发有时候也都需要懂点):1.Core Java,就是Java基础、JDK的类库,很多童鞋都会说,JDK我懂,但是懂还不足够,知其然还要知其所以然

2017-05-01 17:11:33 299

转载 技术大牛养成指南

do more、do better、do exercise  编者按:本文来自微信公众号“InfoQ”(ID:infoqchina),作者李运华,阿里游戏资深软件工程师  有的人想成为大牛,却不曾为此努力。有的人辛苦耕耘,却收获寥寥。很多时候,你跟成功的差距并不是能力,也不是运气,或许只是正确的方法?这是一篇不鸡汤的成功学指南,如果你相信且愿意坚持尝试,未必帮不到你!  一

2017-05-01 11:31:37 380

转载 《Deep Learning》中文翻译总结

前记:2015年,深度学习三大牛Yann LeCun、Yoshua Bengio和Geoffrey Hinton在最新的《Nature》杂志首次合作的发表综述文章《Deep Learning》。本文为该综述文章的中文译文,深入浅出地介绍了深度学习的基本原理,核心优势和未来展望。  摘要:深度学习是允许由多个处理层和多个抽样层学习数据表示的计算机模型。这些方法可以显著提高了最先进的语音识

2017-04-30 11:49:27 1507

转载 java序列化trick and trap

jenwang关于serialVersionUID与序列化"java序列化trick and trap厂内经常出现序列化对象版本不匹配问题,于是发本文说明一些序列化的注意点调用MQ、memcached、rpc等等涉及到远程通讯的都会经过序列化,虽然客户端透明的封装了细节,但底层是一定会有序列化操作的。因此了解序列化的注意事项是非常有必要的,可以避免误用导

2017-04-30 11:48:46 160

转载 零基础入门深度学习(6) - 长短时记忆网络(LSTM)

无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有

2017-04-11 18:52:15 1543

转载 零基础入门深度学习(5) - 循环神经网络

无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有

2017-04-11 18:35:08 756

转载 零基础入门深度学习(4) - 卷积神经网络

无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有

2017-04-11 11:18:21 815

转载 从Gradient Boosting 到GBT

本文大部分参考(译)自wiki[1]如果说Gradient Boosting是一种机器学习算法框架的话,我想GBT(Gradient Boosting Tree)看做它的实现更为合适Gradient Boosting原理与其他Boosting方法一样,Gradient Boosting通过迭代将弱分类器合并成一个强分类器的方法。对于标准的(xi,yi)(xi,yi)

2017-04-10 10:43:39 277

转载 机器学习常见面试题整理

http://kubicode.me/2015/08/16/Machine%20Learning/Common-Interview/有监督学习和无监督学习的区别有监督学习:对具有标记的训练样本进行学习,以尽可能对训练样本集外的数据进行分类预测。(LR,SVM,BP,RF,GBRT)无监督学习:对未标记的样本进行训练学习,比发现这些样本中的结构知识。(KMeans,DL)正则化

2017-04-10 10:31:49 414

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除