大模型提示词工程深度解析:从基础到高阶技巧

大模型提示词工程深度解析:从基础到高阶技巧

一、提示词工程核心概念

1.1 硬提示词 vs 软提示词

维度硬提示词软提示词
表现形式自然语言文本向量参数(浮点数序列)
可见性用户可直接编辑不可读的嵌入向量
应用场景日常对话、文案生成分类任务、参数化提示
训练方式无需训练需要少量数据微调
示例“写一篇关于春天的散文”[0.23, -1.45, 0.87,…]

1.2 软提示词训练实战

# 伪代码示例
class SoftPrompt(nn.Module):
    def __init__(self, prompt_length=10, embed_dim=768):
        self.prompts = nn.Parameter(torch.randn(prompt_length, embed_dim))
        
    def forward(self, inputs):
        # 拼接软提示词与输入
        return torch.cat([self.prompts, inputs], dim=1)

# 训练流程
model = load_pretrained_model()
soft_prompt = SoftPrompt()
optimizer = Adam(soft_prompt.parameters())

for batch in dataloader:
    inputs = model.embed(batch.text)
    inputs = soft_prompt(inputs)
    outputs = model(inputs)
    loss = cross_entropy(outputs, batch.labels)
    loss.backward()
    optimizer.step()

二、提示词高阶技巧

2.1 思维链(Chain-of-Thought)实践

Zero-Shot CoT 模板
请逐步思考并解决以下问题:
问题:小明有5个苹果,吃掉2个后又买了3个,现在有多少苹果?

分步解答:
1. 初始苹果数量:5个
2. 吃掉后的剩余:5 - 2 = 3个
3. 购买后总数:3 + 3 = 6个
最终答案:6个苹果
Few-Shot CoT 示例
输入分步推理输出
“3人4小时生产12件产品”1人1小时产量=12/(3×4)=1件1件
“5人8小时生产?件”总产量=5×8×1=40件40件

2.2 自洽性(Self-Consistency)

原始问题
推理路径1
推理路径2
推理路径3
答案A
答案A
答案B
多数表决
最终答案A

三、冠军级提示词框架:COSA

3.1 COSA框架要素解析

**C**ontext:目标用户是30-45岁的IT从业者,需要快速掌握AI应用  
**O**bjective:生成Python自动化脚本开发教程  
**S**tyle:技术文档风格,代码示例丰富  
**T**one:专业严谨但不失亲和力  
**A**udience:具备基础编程能力的开发者  
**R**esponse:Markdown格式,包含代码块和注释

3.2 论文阅读提示词模板

请按以下结构分析论文《Attention Is All You Need》:
1. 核心创新点
   - Transformer架构
   - 自注意力机制
2. 实验设置
   - WMT 2014英德数据集
   - 8卡P100训练配置
3. 关键结论
   - 并行计算效率提升3倍
   - BLEU值提高2.5点
4. 局限性与改进方向
   - 长序列处理效率问题
   - 内存占用优化空间

四、前沿技术:思维树(Tree-of-Thought)

4.1 ToT实现原理

graph TB
    Root[问题:解方程x²-5x+6=0]
    Root --> Branch1[因式分解法]
    Root --> Branch2[求根公式法]
    Root --> Branch3[图像解法]
    
    Branch1 --> Step1[分解为(x-2)(x-3)=0]
    Branch1 --> Step2[解得x=2或3]
    
    Branch2 --> StepA[计算判别式Δ=25-24=1]
    Branch2 --> StepB[根=5±√1/2 → 2和3]
    
    Branch3 --> StepX[绘制抛物线图像]
    StepX --> StepY[观察与x轴交点]

4.2 ToT提示词示例

请三位数学专家分别用不同方法解决方程问题:
1. 代数专家:使用因式分解法
2. 几何专家:采用图像解法
3. 分析专家:应用求根公式

请每位专家:
1. 写出完整解题过程
2. 验证结果正确性
3. 评估方法优劣

最终整合最优解法

五、提示词工程最佳实践

  1. 动态上下文管理

    • 使用<context>标签维护对话历史
    • 示例:
      <context>
      用户偏好:关注代码性能优化  
      历史对话:已讨论缓存机制  
      当前任务:数据库查询优化
      </context>
      
  2. 元提示词设计

    你是一位资深AI导师,请按以下规则响应:
    1. 先确认问题边界
    2. 给出2-3种解决方案
    3. 对比方案优缺点
    4. 推荐最佳实践
    5. 提示潜在风险
    
  3. 多模态提示融合

    multimodal_prompt = {
        "text": "描述图片中的技术架构",
        "image": "architecture.png",
        "table": ["组件", "功能", "技术栈"],
        "output_format": {"type": "markdown", "section": 3}
    }
    

扩展阅读
[1] Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
[2] Tree of Thoughts: Deliberate Problem Solving with Large Language Models
[3] The COSA Framework: Champion Solution for GPT-4 Prompt Engineering
``

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

monday_CN

72小时打磨,值得1元认可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值