今天学完了调整图像对比度与亮度之后,想与大家一起分享一下学习经验。
本程序可以通过两个滑动条分别调节图像的对比度与亮度。此外,还能分别处理单通道和三通道图像。特别说明 cv::Mat::convertTo函数也能实现此功能,且效率比访问像素值要高。(在本程序最后有具体实现,效果和访问像素值的一样)
主要的API:
1、saturate_cast<uchar>(value)确保值大小范围为0~255。
2、Mat.at<Vec3b>(y,x)[index]=value 给每个像素点每个通道赋值
3、void cv::Mat::convertTo ( OutputArray m,
int rtype,
double alpha = 1,
double beta = 0
) const
该方法将源像素值转换为目标数据类型。在末尾应用了saturate_cast<> ,以避免可能的溢出:
m(x,y)= saturate_cast < rType >(α(∗)(x,y)+β)
参数
beta 可选的添加到缩放值的增量
首先,我们先来介绍下原理吧。主要是利用以下公式:
本程序可以通过两个滑动条分别调节图像的对比度与亮度。此外,还能分别处理单通道和三通道图像。特别说明 cv::Mat::convertTo函数也能实现此功能,且效率比访问像素值要高。(在本程序最后有具体实现,效果和访问像素值的一样)
主要的API:
1、saturate_cast<uchar>(value)确保值大小范围为0~255。
2、Mat.at<Vec3b>(y,x)[index]=value 给每个像素点每个通道赋值
3、void cv::Mat::convertTo ( OutputArray m,
int rtype,
double alpha = 1,
double beta = 0
) const
该方法将源像素值转换为目标数据类型。在末尾应用了saturate_cast<> ,以避免可能的溢出:
m(x,y)= saturate_cast < rType >(α(∗)(x,y)+β)
参数
m 输出矩阵;如果在操作前没有适当的大小或类型,则重新分配。
rtype 期望的输出矩阵类型。
alpha 可选的比例因子。beta 可选的添加到缩放值的增量
实现代码:
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
//--------【定义窗口名称】-------------------
char in[] = "source image";
char out[] = "brightness_contrast_improvement";
//---------【声明全局变量】------------------
int alpha = 1;
int bate = 30;
int CONTRAST_MAX = 50;
int BRIGHTNESS_MAX = 150;
Mat srcImage, dstImage,dst_convert;
//---------【声明全局函数】------------------
void ContrastBrightnessImprovement(int,void*);
//----------【主函数】----------------------
int main(int argc, char** argv)
{
srcImage = imread("1.jpg");
//cvtColor(srcImage, srcImage, CV_BGR2GRAY);//将原图转化为灰度图
dstImage = Mat::zeros(srcImage.size(),srcImage.type());
if (!srcImage.data)
{
cout << "could not load image" << endl;
return -1;
}
namedWindow(in, CV_WINDOW_AUTOSIZE);
imshow(in, srcImage);
namedWindow(out, CV_WINDOW_AUTOSIZE);
//创建调整对比度和亮度的滑动条
createTrackbar("contrast", out, &alpha, CONTRAST_MAX, ContrastBrightnessImprovement);
createTrackbar("brightness", out, &bate, BRIGHTNESS_MAX, ContrastBrightnessImprovement);
ContrastBrightnessImprovement(0, 0);
waitKey(0);
return 0;
}
//调整图像亮度和对比度
void ContrastBrightnessImprovement(int, void*)
{
int rows = srcImage.rows;
int cols = srcImage.cols;
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++)
{
if (srcImage.channels() == 3) //处理RGB三通道图像
{
int b = srcImage.at<Vec3b>(row, col)[0];
int g = srcImage.at<Vec3b>(row, col)[1];
int r = srcImage.at<Vec3b>(row, col)[2];
dstImage.at<Vec3b>(row, col)[0] = saturate_cast<uchar>(b/10.0*alpha + bate);
dstImage.at<Vec3b>(row, col)[1] = saturate_cast<uchar>(g/10.0*alpha + bate);
dstImage.at<Vec3b>(row, col)[2] = saturate_cast<uchar>(r/10.0*alpha + bate);
}
else if (srcImage.channels() == 1) //处理灰度图
{
int gray = srcImage.at<uchar>(row, col);
dstImage.at<uchar>(row, col) = saturate_cast<uchar>(gray/10.0*alpha + bate);
}
}
}
//使用convertTo函数实现
srcImage.convertTo(dst_convert, -1, alpha/10.0, bate);
imshow("dst_convert", dst_convert);
imshow(out, dstImage);
}
运行结果: