tensorflow2-yolov4-程序学习笔记之voc2yolo4.py、voc_annotation.py

项目场景:tensorflow2-yolov4-程序学习笔记

提示:程序由bubbiiiing提供:链接: link.
本程序没有做修改,只是添加了自己的详细注释,作为自己的一个记录。


程序:voc2yolo4.py

本程序为:./VOCdevikit/voc2007/voc2yolo4.py
程序用途:将已经生成的xml文件(放置在:"./VOCdevikit/voc2007/Annotations")。分别归类到"./VOCdevikit/voc2007/ImageSets/Main"中的训练集、训练验证集、验证集、检测集中。

xmlfilepath = "./Annotations"
saveBasePath = "./ImageSets/Main/"
 
#----------------------------------------------------------------------#
#   想要增加测试集修改trainval_percent
#   train_percent不需要修改
#----------------------------------------------------------------------#
trainval_percent = 1     # 设置全部训练集的数量的x%放置在trainval中,(1-x)放置在test中。
train_percent = 1        # 首先trainval与train内容一样,train中保留x,其余的放置到val中。

# 单独提取出xxx.xml类型文件名
temp_xml = os.listdir(xmlfilepath)       # 返回路径下所有文件名称包括文件类型名
total_xml = []
for xml in temp_xml:                     # 整合文件下的xml文件名,放入total_xml中
    if xml.endswith(".xml"):
        total_xml.append(xml)
# print(total_xml)

num = len(total_xml)  # 返回xml文件数量
list = range(num)     # list为文件数量变range格式
tv = int(num*trainval_percent)
tr = int(tv*train_percent)
trainval = random.sample(list, tv)       # 截取list中随机长度为tv的元素,将range中的数打乱截取tv个出来,代表xml文件。
train = random.sample(trainval, tr)       # 同上,在随机种子已经设置好。在trainval中提取tr个出来,乱序。

print("train and val size", tv)
print("traub suze", tr)
ftrainval = open(os.path.join(saveBasePath, 'trainval.txt'), 'w')    # os.path.join拼接路径(自动加/)
ftest = open(os.path.join(saveBasePath, 'test.txt'), 'w')            # open(xxx.'w')打开只用于写入文件
ftrain = open(os.path.join(saveBasePath, 'train.txt'), 'w')
fval = open(os.path.join(saveBasePath, 'val.txt'), 'w')
 
for i in list:
    name = total_xml[i][:-4]+'\n'     # 提取标签文件名,去掉文件类型文字。
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()  
ftrain.close()  
fval.close()  
ftest .close()

程序:voc_annotation.py

本程序为:./annotation.py
程序用途:整合图片文件路径和与之对应的xml文件信息,按照上面的程序划分的训练集、验证集、测试集。
输出结构格式为:图片路径+(bndbox的四点信息+物体在classes定义中的排序号)*n(图片中存在物体的数量)。

保存到根目录2007—test,2007-train,2007-val文件中。为后续信息导入做准备。

import xml.etree.ElementTree as ET
from os import getcwd

sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')]  # 设置输出选项

classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
# 分类结果设置

def convert_annotation(year, image_id, list_file):
    in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id), encoding='utf-8')
    tree=ET.parse(in_file)      # 将xml文档解析为ElementTree对象
    root = tree.getroot()       # 获取element类的树根

    for obj in root.iter('object'):         # 遍历root下面的所有object项目
        difficult = 0
        if obj.find('difficult')!=None:
            difficult = obj.find('difficult').text
            
        cls = obj.find('name').text          # 把这个object的‘name’中内容放入到cls中。(提出xml文件中物体的类型名)
        if cls not in classes or int(difficult)==1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymax').text))
        # 输出每一个object中bndbox的四个参数。
        list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))
        # 生成图片文件的路径+图片中所有bnbbox的参数+name参数在classes中的序号


wd = getcwd()    # 得到当前路径


for year, image_set in sets:
    image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'% (year, image_set)).read().strip().split()
    # 打开文件,read()读取所有文件内容,strip为删除空白字符包括'\n', '\r', '\t',  ' ',split为按照字符串分割
    # 把xml文件名全部放入 image_ids列表
    print(image_ids)
    list_file = open('%s_%s.txt'%(year, image_set), 'w')       # 生成2007—test,2007-train,2007-val文件
    for image_id in image_ids:
        list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg'%(wd, year, image_id))  # 生成xml文件对应图片路径
        convert_annotation(year, image_id, list_file)
        list_file.write('\n')
    list_file.close()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值