YOLOV5训练自己的数据集
文章平均质量分 71
ONEPIECE..
这个作者很懒,什么都没留下…
展开
-
用Python将数据传输到Mysql中
代码中传输的数据是存放有多个列表元素的一个列表,需要注意的是如果传输的数据包含字符,需要加''(单引号),保证被执行的mysql语句形式正确import pymysqldef save(out): conn=pymysql.connect(host ='127.0.0.1',user = 'root',passwd='自己设置的mysql密码',port= 3306,db='需要存放数据所在数据库名',charset='utf8') # 生成游标对象 cur = conn.c原创 2022-01-18 14:38:53 · 1531 阅读 · 1 评论 -
目标检测及座位余量分析
一、概述本文是针对目标检测的应用,接着目标检测(28条消息) YOLOv5训练自己的数据集_ONEPIECE_00的博客-CSDN博客及目标定位(28条消息) 目标检测及目标定位_ONEPIECE_00的博客-CSDN博客的针对检测后的结果判断座位上是否还有人。在目标定位的基础上修改代码,主要是增加对多个图片按顺序进行检测,并按结果一定逻辑判断其结果,以及增加定时的功能。主要就是在检测的结果的基础上,对结果的处理与应用,然后我分别以检测的detec.py文件、目标定位的site_pro.py、检测结果处原创 2021-10-06 00:35:44 · 1994 阅读 · 3 评论 -
目标检测及目标定位
tensor与numpy的转化numpy=tensor.numpy()由于输入图片的尺寸不同,所以需要进行统一,我采用的是一致用小数表示,先获取图片对应的尺寸大小,然后再将得到的目标的坐标,分别去除于对应的数据,最后得到的是以图片为1*1的比例的数据,然后根据坐标的位置最后来判断处于某个区域import os from PIL import Image img=Image.open(source) x1,x2=img.size print(im..原创 2021-10-03 19:16:34 · 5215 阅读 · 3 评论 -
YOLOv5训练自己的数据集
一、概述 使用YOLOv5训练数据集,大致分为3个步骤:训练前的数据准备及处理、训练自己的数据集、检测,以及训练后一些优化问题。二、训练前准备工作首先从YOLOv5的官方网站:https://github.com/ultralytics/yolov5下载对应项目到自己的平台,我这里使用的是Google cloab.1.处理数据 对你的图片用labelImge之类的软件进行处理,标记你的图片,并且注意分别保存xml文件和图片如果需要对你的图片重新进行批量命名,要命名后再标注...原创 2021-09-21 00:44:02 · 1905 阅读 · 2 评论