poj 1637 最大流(混合图欧拉回路)

。。。。对拍了好久,对出个300多个遍的bug,正在纠结要不要看的时候。。突然发现。。哪错了。。边权是1 。。但你也不能就赋1啊。。你个白痴T,T。。


对于无向边,随便定向,然后看看每个点的出入度之差是不是偶数,如果有不是的那就不是欧拉图了,如果都是,那么对于之差为偶的点,改变x/2 (x为出入度之差)条边,如果是满流,那么就能变成欧拉回路。如果不是满流,就不能变成欧拉回路。

建图:将入度>出度的点与vt相连,边权值为x,将入度<出度的点与vs相连,边权值为x,对于每条边权值都为1.(但要加加加啊。。)



#include<stdio.h>
#include<string.h>
#include<math.h>
#include<cstdlib>
#define MX 1000000
using namespace std;
int m,s,in[400],out[400],cas,map[400][400],d[400];
struct edge{
	int u,v;
}eg[2005];
int min(int a,int b){
	return a<b?a:b;
}
bool bfs(){
	int queue[10000],qs=0,qe=1;
	queue[qs]=0;
	memset(d,-1,sizeof(d));
	d[0]=0;
	while(qs<qe){
		int v=queue[qs++];
		for(int i=0;i<=m+1;i++){
			if(d[i]==-1&&map[v][i]){
				d[i]=d[v]+1;
				queue[qe++]=i;
			}
		}
	}
	if(d[m+1]==-1)return false;
	return true;
}
int dfs(int start,int sum){
	if(start==m+1){
		return sum;
	}
	int sumcy=sum;
	for(int i=0;i<=m+1;i++){
		if(map[start][i]&&d[i]==d[start]+1){
			int t=dfs(i,min(map[start][i],sum));
			map[start][i]-=t;
			map[i][start]+=t;
			sum-=t;
		}
	}
	return sumcy-sum;
}
int main(){
	scanf("%d",&cas);
	while(cas--){
		memset(in,0,sizeof(in));
		memset(out,0,sizeof(out));
		memset(map,0,sizeof(map));
		scanf("%d%d",&m,&s);
		int k=0;
		for(int i=0;i<s;i++){
			int a,b,c;
			scanf("%d%d%d",&a,&b,&c);
			if(a==b)continue;
			if(c!=1){
				eg[k].u=a;
				eg[k++].v=b;
			}
			out[a]++;
			in[b]++;
		}
		//printf("!\n");
		bool flag=true;
		int sum=0;
		for(int i=1;i<=m;i++){
			int p=out[i]-in[i];
			if((abs(p))%2){
				flag=false;
//				printf("!\n");
				break;
			}
			else {
				if(out[i]-in[i]>0){
					map[0][i]+=(out[i]-in[i])/2;
					sum+=(out[i]-in[i])/2;
				}
				else {
					map[i][m+1]+=(in[i]-out[i])/2;
				}
			}
		}
		if(!flag){
			printf("impossible\n");
			continue;
		}
		for(int i=0;i<k;i++){
				map[eg[i].u][eg[i].v]+=1;
		}
//		for(int i=0;i<=m+1;i++){
//			for(int j=0;j<=m+1;j++){
//				printf("%d ",map[i][j]);
//			}
//			printf("\n");
//		}
		int ans=0;
		while(bfs()){
			ans+=dfs(0,MX);
		}
//		for(int i=1;i<=m;i++){
//			if(map[0][i]){
//				flag=false;
//				break;
//			}
//		}
		if(sum==ans){
			flag=true;
		}
		else flag=false;
		if(flag){
			printf("possible\n");
		}
		else{
			printf("impossible\n");
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值