BZOJ 1093 [ZJOI 2007] Tarjan+DAG拓扑排序DP 解题报告

1093: [ZJOI2007]最大半连通子图

Description

一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。若G’=(V’,E’)满足V’?V,E’是E中所有跟V’有关的边,则称G’是G的一个导出子图。若G’是G的导出子图,且G’半连通,则称G’为G的半连通子图。若G’是G所有半连通子图中包含节点数最多的,则称G’是G的最大半连通子图。给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。

Input

第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述接下来M行,每行两个正整数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。N ≤100000, M ≤1000000;对于100%的数据, X ≤10^8

Output

应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.

Sample Input

6 6 20070603

1 2
2 1
1 3
2 4
5 6
6 4

Sample Output

3
3

【解题报告】
缩点之后发现最长路就是答案。跑的过程中记录一下方案数。
跑最长路的时候需要判重。
代码看得黄学长的。。。

代码如下:

/**************************************************************
    Problem: 1093
    User: onepointo
    Language: C++
    Result: Accepted
    Time:1872 ms
    Memory:39536 kb
****************************************************************/

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 100010 

int mx,ans;
int ind,cnt,scc,top;
int n,m,X;
int last[N],last2[N];
int dfn[N],low[N],hav[N],belong[N],q[N];
int r[N],f[N],g[N],vis[N];
bool inq[N];
struct edge{int to,next;}e[2000005],ed[2000005];

void insert(int u,int v)
{
    e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
}
void ins(int u,int v)
{
    ed[++cnt].to=v;ed[cnt].next=last2[u];last2[u]=cnt;
    r[v]++;
}
void tarjan(int x)
{
    dfn[x]=low[x]=++ind;
    q[++top]=x;inq[x]=1;
    for(int i=last[x];i;i=e[i].next)
    if(!dfn[e[i].to])
        tarjan(e[i].to),low[x]=min(low[x],low[e[i].to]);
    else if(inq[e[i].to])low[x]=min(low[x],dfn[e[i].to]);
    int now=0;
    if(low[x]==dfn[x])
    {
        scc++;
        while(now!=x)
        {
            now=q[top];top--;
            inq[now]=0;
            hav[scc]++;
            belong[now]=scc;
        }
    }
}
void rebuild()
{
    cnt=0;
    for(int x=1;x<=n;x++)
    {
        for(int i=last[x];i;i=e[i].next)
        if(belong[x]!=belong[e[i].to])
            ins(belong[x],belong[e[i].to]);
    }
}
void dp()
{
    int head=0,tail=0;
    for(int i=1;i<=scc;++i)
    {
        if(!r[i]) q[tail++]=i;
        f[i]=hav[i];g[i]=1;
    }
    while(head!=tail)
    {
        int now=q[head];head++;
        for(int i=last2[now];i;i=ed[i].next)
        {
            r[ed[i].to]--;
            if(!r[ed[i].to])q[tail++]=ed[i].to;
            if(vis[ed[i].to]==now)continue;
            if(f[now]+hav[ed[i].to]>f[ed[i].to])
            {
                f[ed[i].to]=f[now]+hav[ed[i].to];
                g[ed[i].to]=g[now];
            }
            else if(f[now]+hav[ed[i].to]==f[ed[i].to])
                g[ed[i].to]=(g[ed[i].to]+g[now])%X;
            vis[ed[i].to]=now;
        }
    }
}
int main()
{
    scanf("%d%d%d",&n,&m,&X);
    for(int i=1;i<=m;++i)
    {
        int u,v;
        scanf("%d%d",&u,&v);
        insert(u,v);
    }
    for(int i=1;i<=n;++i) if(!dfn[i]) tarjan(i);
    rebuild();
    dp();
    for(int i=1;i<=scc;++i)
    {
        if(f[i]>mx) mx=f[i],ans=g[i];
        else if(f[i]==mx) ans=(ans+g[i])%X;
    }
    printf("%d\n%d\n",mx,ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值