基于扩散模型的文本到图像生成实战:使用 Stable Diffusion + Diffusers
摘要
随着生成式 AI 的迅速发展,扩散模型(Diffusion Model)以其高质量、多样化的图像合成能力成为当下最火的文本到图像生成技术。本文将从扩散模型原理出发,手把手教你使用 Hugging Face Diffusers 库和 Stable Diffusion 模型在本地快速部署与调优,最终实现自定义提示词、图像增强与多样化风格化输出。
关键词:扩散模型 · Stable Diffusion · Hugging Face Diffusers · 文本到图像 · Prompt Engineering
目录
一、扩散模型原理概述
扩散模型(Diffusion Model)是一类生成式模型,核心思想包括两个阶段:
-
前向扩散(Forward Diffusion)
将干净图像x₀
逐步加入高斯噪声,生成一系列{x₁, x₂, …, x_T}
,最终得到近似高斯分布的纯噪声。 -
反向扩散(Reverse Diffusion)
训练一个神经网络ε_θ(x_t, t)
来预测并移除噪声,从x_T
恢复到x₀
。在文本到图像任务中,通过条件化过程(Conditioning)将文本嵌入作为附加输入,引导模型生成与提示词(Prompt)语义对齐的图像。
相较于 GAN,扩散模型具有训练更稳定、生成质量更高的优势,但推理速度稍慢。借助 NVIDIA TensorRT、ONNX Runtime 或者更高效的调度策略,可以大幅提升生成性能。
二、环境准备
# 建议使用 Conda 或 venv 创建独立环境
conda create -n sd-diffusers python=3.10 -y
conda activate sd-diffusers
# 安装核心依赖
pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu118
pip install diffusers transformers accelerate safetensors
pip install pillow tqdm
注意:
- 如果使用 CPU,请安装 CPU 版本的
torch
;- 推荐在拥有 NVIDIA GPU(CUDA 11.8+)的机器上运行以获得最佳速度;
- 如需更快推理,可后续集成交叉注意力切片、ONNX 导出等优化。
三、快速上手:基础示例
下面示例展示如何加载 Stable Diffusion v1.5 模型,并生成一张“赛博朋克城市夜景”风格的图像。
import torch
from diffusers import StableDiffusionPipeline
from PIL import Image
# 1. 加载管道