ETC2560 ETC5256 Class Test 2024R

Java Python ETC2560 ETC5256 Class Test 2024

Q1       The data below are obtained from a general insurance portfolio. Estimate Kendall’s tau between the two variables and perform. a statistical test on its significance. Show your work clearly.

Q2      Use the eigenvalues of covariance matrix method to perform. the principal component

analysis (PCA on the data  Show your steps clearly.

Q3       The following results are generated from applying a linear regression model with one explanatory variable to an insurance data set of 20 observations. Calculate the intercept and regression coefficient and test their statistical significance. Then deduce the 95% prediction interval of Y * when x * = 11.5. Show your work clearly.

   

Q4      A generalised linear model with the gamma distribution and the identity link function is applied to a large insurance data set. The computation results and the residual plots are shown below. Discuss whether the fitted model is suitable for the data set and suggest how it can possibly be improved, including how to modify the R code below.

> model<-glm(y~x1+x2,family=Gamma(link="identity"))

> summary(model)

Call:

glm(formula = y ~ x1 + x2, family = Gamma( ETC2560 ETC5256 Class Test 2024R link = "identity"))

Coefficients:

Estimate

Std. Error            t value

Pr(>|t|)

(Intercept)         0.97421

0.02220              43.883

<2e-16 ***

x1                         0.02559              0.03313              0.772                   0.44

x2                         2.01319               0.03580               56.234                 <2e-16 ***

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ .’ 0.1 ‘ ’ 1

(Dispersion parameter for Gamma family taken to be 0.0313481)

Null deviance: 125.904  on 999  degrees of freedom

Residual deviance:  33.107  on 997  degrees of freedom

AIC: 683         

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值