ProgSD Team Project Specification 2024 E-Vehicle Share SystemR

Java Python ProgSD Team Project Specification 2024

E-Vehicle Share System

Objective

Your task is to create a software system to support an electric vehicle share programme. You need to create a functioning end-to-end prototype and demonstrate it with appropriate data. Your product is meant to provide an interface for customers to reserve and return vehicles and to pay their bills; for operators to assess the state of the vehicles in the system and make changes; and for managers to view usage reports.

Your system must be implemented as a web app using Djangohttps://www.djangoproject.com/, with a front-end implemented using Bootstraphttps://getbootstrap.com/ . You and your team should use the documentation and tutorials from the project websites to develop your application. Note that developing skills in reading and understanding this sort of API documentation is one of the specific aims of this course.

Your system must include a database to store the details of the vehicles, charging points, city locations, customers, and any other data as needed by your implementation. You must include at least two vehicle types, for example electric scooters and electric bikes; you can also include more vehicle types if you want.

The detailed functionality of the system is up to you, but it should include at least the following capabilities:

•    Customers should be able to:

Rent a vehicle at any location in the city, as long as there is a working vehicle available at that location.

Return a vehicle to any location. When a customer returns a vehicle, their account is

charged depending on how long the vehicle rental was and what type of vehicle was used.

Report a vehicle as defective.

Pay any charges on their account.

•    Operators should be able to:

Track the location of all vehicles in the city.

Charge avehicle when the battery is depleted.

Repair a defective vehicle.

Move vehicles to different locations around the c ProgSD Team Project Specification 2024 E-Vehicle Share SystemR ity as needed.

•    Managers should be able to:

Generate reports showing all vehicle activities over a defined time period, using appropriate data visualisation techniques.

You may want to consult similar real-world systems such as Lime (https://li.me/) or Voi

(https://www.voiscooters.com/) to help with your system design. Note that it is not expected that you exactly duplicate the functionality of these systems.

Collaboration and communication

You will be provided an account on the university’sgitlab servers, and you must use these servers to work together to develop your code. You will be asked to provide a link to the git project as part of the submission process.

For communication among team members, you must create a chat group on Microsoft Teams. You should not use other platforms such as , Discord, or WhatsApp for communication among team members. You should also make sure that you communicate in a language that all team members can understand.

What to submit

Each group must submit the following (through Moodle):

•    A report describing the functionality that was implemented, explaining any design decisions that were made. The report should also include a summary of how each team member contributed to the design and implementation, as well as to the report. Templates and examples will be provided.

•    A video presentation of your system, up to 10 minutes long.

o All members of the team must speak on the video (cameras not required)

o The video must include a live demo of all the system functionality, as well as a discussion of all design decisions.

•    A link to the gitlab project which should contain all of the source code involved in the system, along with any other resources required to run it. Your repository should also include a README file describing exactly how to run your software         

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值