信息增益的代码实现

本文介绍了如何在Python中计算信息增益,通过创建数据、计算信息熵和标签信息熵,进而计算信息增益。文章详细阐述了计算过程,包括子集信息熵的计算和标签信息增益的求和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当子集较少时不必使用for循环即可实现。
步骤很简单:计算总的信息熵,计算标签信息熵,再计算信息增益。
1、创建data1
在这里插入图片描述
2、计算最后一列即跑步中二分类的占比
在这里插入图片描述
3、计算总的信息熵
在这里插入图片描述
4、以一个标签为例计算不同标签的gain值
(1)定义函数并以一个标签为例计算不同子集的信息熵
在这里插入图片描述
(2)计算不同子集所占的比例
在这里插入图片描述
(3)不同子集信息熵与所占比例之积求和
在这里插入图片描述
(4)该标签的信息熵

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值