Spark---持久化,共享变量和RDD之间的依赖关系详解

一、持久化

1、什么是持久化,为什么要持久化

Spark中最重要的功能之一是跨操作在内存中持久化(或缓存)数据集。当您持久化RDD时,每个节点将其计算的任何分区存储在内存中,并在该数据集(或从该数据集派生的数据集)上的其他操作中重用这些分区。这使得未来的行动更快(通常超过10倍)。缓存是迭代算法和快速交互使用的关键工具。

2、如何进行持久化

持久化的方法就是rdd.persist()或者rdd.cache()

3、持久化策略

可以通过persist(StoreageLevle的对象)来指定持久化策略

rdd.persist(StorageLevel.MEMORY_ONLY)
持久化策略含义
MEMORY_ONLY(默认)rdd中的数据,以未经序列化的java对象格式,存储在内存中。如果内存不足,剩余的部分不持久化,使用的时候,没有持久化的那一部分数据重新加载。这种效率是最高,但是是对内存要求最高的。
MEMORY_ONLY_SER就比MEMORY_ONLY多了一个SER序列化,保存在内存中的数据是经过序列化之后的字节数组,同时每一个partition此时就是一个比较大的字节数组。
MEMORY_AND_DISK和MEMORY_ONLY相比就多了一个,内存存不下的数据存储在磁盘中
MEMEORY_AND_DISK_SER比MEMORY_AND_DISK多了个序列化
DISK_ONLY就是MEMORY_ONLY对应,都保存在磁盘,效率太差,一般不用。
xxx_2就是上述多个策略后面加了一个_2,比如MEMORY_ONLY_2,MEMORY_AND_DISK_SER_2等等,就多了一个replicate而已,备份,所以性能会下降,但是容错或者高可用加强了。所以需要在二者直接做权衡。如果说要求数据具备高可用,同时容错的时间花费比从新计算花费时间少,此时便可以使用,否则一般不用。
HEAP_OFF(experimental)使用非Spark的内存,也即堆外内存,比如Tachyon,HBase、Redis等等内存来补充spark数据的缓存。
4、如何选择一款合适的持久化策略

第一就选择默认MEMORY_ONLY,因为性能最高嘛,但是对空间要求最高;如果空间满足不了,退而求其次,选择MEMORY_ONLY_SER,此时性能还是蛮高的,相比较于MEMORY_ONLY的主要性能开销就是序列化和反序列化;如果内存满足不了,直接跨越MEMORY_AND_DISK,选择MEMEORY_AND_DISK_SER,因为到这一步,说明数据蛮大的,要想提高性能,关键就是基于内存的计算,所以应该尽可能的在内存中存储对象;DISK_ONLY不用,xx_2的使用如果说要求数据具备高可用,同时容错的时间花费比从新计算花费时间少,此时便可以使用,否则一般不用。

二、共享变量

为了能够更加高效的在driver和算子之间共享数据,spark提供了两种有限的共享变量,一广播变量,二累加器。

1、broadcast广播变量

如果我们要在分布式计算里面分发大对象,例如:字典,集合,黑白名单等,这个都会由Driver端进行分发,一般来讲,如果这个变量不是广播变量,那么每个task就会分发一份,这在task数目十分多的情况下Driver的带宽会成为系统的瓶颈,而且会大量消耗task服务器上的资源,如果将这个变量声明为广播变量,那么只是每个executor拥有一份,这个executor启动的task会共享这个变量,节省了通信的成本和服务器的资源。

val list = List("hello hadoop")
//定义广播变量
val broadCast = sc.broadcast(list)
//调用
val data=broadCast.value

注意:
1、能不能将一个RDD使用广播变量广播出去?
不能,因为RDD是不存储数据的。可以将RDD的结果广播出去。
2、 广播变量只能在Driver端定义,不能在Executor端定义。
3、 在Driver端可以修改广播变量的值,在Executor端无法修改广播变量的值。
4、如果executor端用到了Driver的变量,如果不使用广播变量在Executor有多少task就有多少Driver端的变量副本。
5、如果Executor端用到了Driver的变量,如果使用广播变量在每个Executor中只有一份Driver端的变量副本。

2、accumulator累加器

accumulator累加器的概念和mr中出现的counter计数器的概念有异曲同工之妙,对某些具备某些特征的数据进行累加。累加器的一个好处是,不需要修改程序的业务逻辑来完成数据累加,同时也不需要额外的触发一个action job来完成累加

//构建一个累加器
val accu = sc.longAccumuator()
//累加的操作
accu.add(参数)
//获取累加器的结果,累加器的获取,必须需要action的触发
val ret = accu.value

注意:
1、累加器的调用,也就是accumulator.value必须要在action之后被调用,也就是说累加器必须在action触发之后。
2、多次使用同一个累加器,应该尽量做到用完即重置。accumulator.reset
3、尽量给累加器指定name,方便我们在web-ui上面进行查看。

三、RDD数据分区

Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数、RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数。
分区的决定,就是在宽依赖的过程中才有,窄依赖因为是一对一或者一对常熟,分区确定的,所以不需要指定分区操作。

1、Partitioner

在Spark中涉及RDD的分区策略的抽象类为Partitioner,有两个核心的子类实现,一个HashPartitioner,一个RangePartitioner。Spark中数据分区的主要工具类(数据分区类),主要用于Spark底层RDD的数据重分布的情况中。

2、HashPartitioner

Spark中非常重要的一个分区器,也是默认分区器,默认用于90%以上的RDD相关API上。
功能:依据RDD中key值的hashCode的值将数据取模后得到该key值对应的下一个RDD的分区id值,支持key值为null的情况,当key为null的时候,返回0;该分区器基本上适合所有RDD数据类型的数据进行分区操作;但是需要注意的是,由于JAVA中数组的hashCode是基于数组对象本身的,不是基于数组内容的,所以如果RDD的key是数组类型,那么可能导致数据内容一致的数据key没法分配到同一个RDD分区中,这个时候最好自定义数据分区器,采用数组内容进行分区或者将数组的内容转换为集合。

3、RangePartitioner

SparkCore中除了HashPartitioner分区器外,另外一个比较重要的已经实现的分区器,主要用于RDD的数据排序相关API中,比如sortByKey底层使用的数据分区器就是RangePartitioner分区器;该分区器的实现方式主要是通过两个步骤来实现的,第一步:先从整个RDD中抽取出样本数据,将样本数据排序,计算出每个分区的最大key值,形成一个Array[KEY]类型的数组变量rangeBounds;第二步:判断key在rangeBounds中所处的范围,给出该key值在下一个RDD中的分区id下标;该分区器要求RDD中的KEY类型必须是可以排序的。

四、RDD依赖关系

1、依赖关系

RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。
1、窄依赖(narrow dependency):指的是子RDD一个分区中的数据,来自于上游RDD中一个分区或者常数个分区。
2、宽依赖(wide dependency):指的是子RDD一个分区中的数据,来自于上游RDD所有的分区。

2、血统Lineage

RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(即血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

  • 27
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: Spark中的RDD(Resilient Distributed Datasets)是一种分布式的数据结构,它可以被分割成多个分区,每个分区可以在不同的节点上进行计算。RDD提供了一系列的转换和操作函数,可以对RDD进行各种操作。 RDD转换函数包括map、filter、flatMap、union、distinct、groupByKey、reduceByKey、sortByKey等。这些函数可以对RDD进行转换操作,生成新的RDDRDD操作函数包括count、collect、reduce、take、foreach等。这些函数可以对RDD进行操作,返回结果或者将结果输出到外部系统。 在使用RDD时,需要注意一些问题,如RDD的惰性计算、RDD持久化RDD的分区等。同时,还需要根据实际情况选择合适的RDD转换和操作函数,以达到最优的计算效果。 总之,Spark中的RDD转换和操作函数是非常重要的,掌握它们可以帮助我们更好地使用Spark进行分布式计算。 ### 回答2: Spark是一个基于内存计算的分布式计算框架,可以实现大规模数据集的快速处理。在Spark中,RDD(弹性分布式数据集)是数据处理的核心概念,它是一种可以分区、并行计算和容错的不可变数据结构。而Spark中的函数式编程模型则将RDD的转换与操作都看做是函数的调用,从而简洁明了,易于理解和操作。 在Spark中,解决一个具体问题通常涉及一系列RDD的转换和操作。RDD的转换包括对原有RDD进行过滤、映射、聚合等处理,得到新的RDD;操作则是对新的RDD进行输出、保存、统计、排序等操作。以下介绍几种常见的RDD转换和操作函数。 1. map函数 map函数是一种转换函数,它可以将一个RDD中每个元素通过一个用户定义的函数映射到另一个RDD中,并得到新的RDD。例如,将一个整型RDD中的每个元素都乘以2后得到一个新的整型RDD: ``` val rdd1 = sc.parallelize(Array(1, 2, 3, 4)) val rdd2 = rdd1.map(x => x*2) ``` 2. filter函数 filter函数也是一种转换函数,它可以根据用户定义的条件过滤一个RDD中的元素,并得到一个新的RDD。例如,将一个字符串RDD中长度大于5的元素过滤出来得到一个新的字符串RDD: ``` val rdd1 = sc.parallelize(Array("hello", "world", "spark", "rdd")) val rdd2 = rdd1.filter(x => x.length > 5) ``` 3. reduce函数 reduce函数是一种操作函数,它可以将一个RDD中的元素按照用户定义的函数进行聚合并得到一个结果。例如,将一个整型RDD中的所有元素相加得到一个整数结果: ``` val rdd1 = sc.parallelize(Array(1, 2, 3, 4)) val result = rdd1.reduce((x, y) => x + y) ``` 4. collect函数 collect函数也是一种操作函数,它可以将一个RDD中的所有元素收集起来并输出到Driver端。然而,使用collect函数需要注意RDD的大小,如果RDD很大,就可能会出现内存溢出的情况。例如,将一个整型RDD中的所有元素收集起来并输出到屏幕: ``` val rdd1 = sc.parallelize(Array(1, 2, 3, 4)) val result = rdd1.collect() result.foreach(println) ``` 5. saveAsTextFile函数 saveAsTextFile函数也是一种操作函数,它可以将一个RDD中的所有元素保存到指定的文本文件中。例如,将一个字符串RDD中的所有元素保存到hdfs的一个文本文件中: ``` val rdd1 = sc.parallelize(Array("hello", "world", "spark", "rdd")) rdd1.saveAsTextFile("hdfs://localhost:8020/user/abc/output") ``` 总之,Spark中的RDD转换和操作函数具有弹性、高效、简单等特点,能够满足各种大规模数据处理需求。需要特别注意的是,Spark中的函数式编程模型是基于JVM的,因此要充分利用内存和CPU资源,需要对集群配置和调优进行一定的优化和测试。 ### 回答3: Spark中的RDD(Resilient Distributed Datasets)是分布式的弹性数据集,它可以在大规模集群上并行化地计算,并且提供了一系列的转换和操作函数。其中,Spark提供的Spark函数简单易用,具有高效的数据处理能力,可以帮助开发者快速开发分布式应用程序。 RDD转换函数是将一个RDD转换成另一个RDD的函数,转换后的RDD通常包含了数据处理、筛选和过滤后的新数据集,可以用来接着进行后续的计算。 例如,map函数可以将RDD中的每个元素应用一个函数,然后返回一个新的转换过的RDD: ``` val originalData = sc.parallelize(List(1, 2, 3, 4, 5)) val mappedData = originalData.map(x => x * 2) ``` 这里,map函数将原始数据中的每个元素都乘上了2,返回了一个新的RDD。 除了map函数, 还有flatMap、filter、groupBy等常用的转换函数,都可以帮助我们对RDD做出各种各样的数据处理和转换。 RDD操作函数则是对RDD进行真正的计算操作,例如reduce、count、collect等函数,这些函数会触发Spark分布式计算引擎执行真正的计算任务。 比如,reduce函数可以将RDD中的所有元素进行聚合,返回一个单一的结果: ``` val originalData = sc.parallelize(List(1, 2, 3, 4, 5)) val reducedData = originalData.reduce(_ + _) ``` 这里,reduce函数将原始数据中的所有元素进行相加操作,返回了一个整数类型的结果。 Spark提供的操作函数非常丰富,从基本的聚合、排序、统计操作,到高级的机器学习和图形处理等操作,开发者可以根据不同的业务需求灵活选择使用。 总之,Spark中的RDD转换和操作函数是分布式数据处理的核心之一,通过这些函数,开发者能够方便地对海量数据进行分布式的计算和处理。同时,Spark也提供了丰富的API和工具,便于开发者进行高效的Spark应用程序开发。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值