HDU 1024 Max Sum Plus Plus

题意:给定由 n个整数(可能为负整数)组成的序列a1,a2,a3,……,an,以及一个正整数 m,要求确定序列 a1,a2,a3,……,an的 m个不相交子段,

使这m个子段的总和达到最大,求出最大和。

分析:动态规划的思想。

1.基本思路:

  首先,定义数组num[n],dp[m][n]. num[n]用来存储n个整数组成的序列.

 dp[i][j]用来表示由前 j项得到的含i个字段的最大值,且最后一个字段以num[j]项结尾。仔细想想,我们可以知道:

 dp[i][j]=max(dp[i][j-1]+num[j],dp(i-1,t)+num[j])   其中i-1<=t<=j-1.(因为必须是以 num[j] 结尾的,所以num[j]一定属于最后一个子段,即要么自己独立成一个子段,要么与前边以num[j-1]结尾的子段联合)

  所求的最后结果为 max( dp[m][j] ) 其中1<=j<=n.

  但是,我们会发现,当n非常大时,这个算法的时间复杂度和空间复杂度是非常高的,时间复杂度近似为O(m*n^2),

  空间复杂度近似为O(m*n).因此,我们需要优化算法来降低时间复杂度和空间复杂度.

2.优化算法:

 (1)节省时间

  由基本思路,我们可以知道,dp[i][j]=max(dp[i][j-1]+num[j],dp(i-1,t)+num[j]),其中i-1<=t<=j-1.我们只要找到dp[i][j-1]

  和dp[i-1][t]的最大值加上num[j]即为dp[i][j].所以,定义一个数组pre_max[n],用pre_max[j-1]来表示求解dp[i][j]时dp[i-1][t]

  的最大值,则dp[i][j]=max(pre_max[j-1],dp[i][j-1])+num[j].

  特别注意,pre_max[n]这个位置的存储空间是始终用不到的,因此可以用来存储其他数值,在接下来会用到。

  在求解dp[i][j]的同时,我们可以计算出dp[i][t];i<=t<=j的最大值,这个最大值在计算dp[i+1][j+1]的时候需要作为pre_max[j]的

  形式被使用,我们先把它存在pre_max[n]中。

  你可能会问:为什么不把它直接放在pre_max[j]中呢?因为你接下来需要计算dp[i][j+1]的值,需要用到pre_max[j]中原来的值,

  如果你把它存在这里,就会覆盖掉计算dp[i][j+1]所需要的那个值。所以,先把它放在pre_max[n]中。

  当我们计算完dp[i][j+1]之后,就会发现pre_max[j]中的值已经没有用处了,我们可以把它更新为计算dp[i+1][j+1]所需要的那个值,

  即之前放在pre_max[n]中的那个值,即执行pre_max[j]=pre_max[n].

  这样我们就节省了计算最大值时付出的时间代价。

 (2)节省空间

  通过时间的节省,我们突然间发现程序执行结束后pre_max[n]的值即为最后的结果,pre_max[n]数组才是我们希望求解的,

 dp[m][n]这个庞大的数组已经不是那么重要了,因此,我们现在用整型数tmp来代替dp[m][n],用来临时存储dp[i][j]的值,

  作为求解pre_max[n]的中介。

  这样就节省了dp[i][j]占用的极大的空间.


Sample Input

1 3 1 2 3

2 6 -1 4 -2 3 -2 3

 

 

Sample Output

6

8

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define maxn 1000010
int num[maxn],pre_max[maxn];
int max(int a,int b)
{
    return a>b?a:b;
}
int DP(int n,int m)
{
    int i,j,k;
    for(i=1;i<=m;i++)
    {
        int tmp=0;
        for(k=1;k<=i;k++)
        tmp+=num[k];
        pre_max[n]=tmp;
        for(j=i+1;j<=n;j++)
        {
            tmp=max(tmp,pre_max[j-1])+num[j];
            pre_max[j-1]=pre_max[n];
            pre_max[n]=max(pre_max[n],tmp);
        }
    }
    return pre_max[n];
}
int main()
{
    int n,m;
    while(~scanf("%d%d",&m,&n))
    {
        int i;
        for(i=1;i<=n;i++) 
        {
            scanf("%d",&num[i]);
            pre_max[i]=0;
        }
        printf("%d\n",DP(n,m));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值