机器学习
文章平均质量分 63
Sout xza
这个作者很懒,什么都没留下…
展开
-
卷积神经网络中nn.Conv2d()和nn.MaxPool2d()以及卷积神经网络实现minist数据集分类
卷积神经网络中nn.Conv2d()和nn.MaxPool2d()卷积神经网络之Pythorch实现:nn.Conv2d()就是PyTorch中的卷积模块参数列表参数作用in_channels输入数据体的深度out_channels输出数 据体的深度kernel_size滤波器(卷积核)的大小 注1stride滑动的步长padding零填充的圈数 注2bias是否启用偏置,默认是True,代表启用groups输出数据体深度上和输入原创 2021-12-03 23:18:47 · 2385 阅读 · 0 评论 -
LetNet、Alex、VggNet分析及其pytorch实现
简单分析一下主流的几种神经网络LeNetLetNet作为卷积神经网络中的HelloWorld,它的结构及其的简单,1998年由LeCun提出基本过程:可以看到LeNet-5跟现有的conv->pool->ReLU的套路不同,它使用的方式是conv1->pool->conv2->pool2再接全连接层,但是不变的是,卷积层后紧接池化层的模式依旧不变。代码:import torch.nn as nnimport torchclass LeNet(nn.M原创 2021-12-03 23:13:18 · 1070 阅读 · 0 评论 -
nn.Conv2d()中dilation参数的作用
nn.Conv2d()中dilation参数的作用下面这张图很好的描述了这个参数的作用好处:这样每次进行单次计算时覆盖的面积(感受域)增大,最开始时3*3 = 9 然后是5*5 = 25最后是7*7=49,增加了感受域却并未增加计算量,保留了更多的细节信息,对图像还原有明显的提升。...原创 2021-12-01 11:23:36 · 4258 阅读 · 0 评论 -
全连接神经网络学习笔记
全连接神经网络前馈神经网络包含的层:线性层和卷积层:这两种层对输入进行线性计算。层内维护着线性运算的权重激活层:这层对数据进行非线性运算。非线性运算时可以逐元素非线性运算的,也可以是其它类习惯的非线性运算归一化层:根据输入的均值和方差对数据进行归一化,使得数据的范围在一个相对固定的范围内池化层和视觉层:这两种层和数据重采样有关,包括对数据进行下采样(就是隔几个数据采一个数据)、上采样(把一个数据复制出很多份)和重新排序。丢弃层:在输入中随机选择一些输出补齐层:采用循环补齐等方法让数据变多原创 2021-11-28 20:10:30 · 1017 阅读 · 0 评论 -
线性回归学习学习笔记及其入门案例
线性回归最小二乘法使用torch.lstsq()求解线性回归问题两个重要推论与权值点乘X[i,:]⋅W=x[i,0]w[0]+x[i,1]w[1]+……+x[i,m−1]w[m−1]+x[i,m]w[m] X[i, :]·W = x[i, 0]w[0] + x[i, 1]w[1] + …… + x[i, m-1]w[m-1] + x[i, m]w[m] X[i,:]⋅W=x[i,0]w[0]+x[i,1]w[1]+……+x[i,m−1]w[m−1]+x[i,m]w[m]二范数的计算方法∣∣Y原创 2021-11-27 14:06:14 · 1229 阅读 · 0 评论 -
KNN聚类
K-Means聚类算法代码:import pandas as pdimport random as rdimport matplotlib.pyplot as pltfrom matplotlib.pylab import styleiris_data = pd.read_csv("iris.csv", header=None, usecols=[0, 2, 4])iris_data[5] = -1# 设置初始距离iris_data[6] = 10000data = iris_dat原创 2021-11-08 20:18:39 · 649 阅读 · 0 评论 -
KNN算法实现对iris数据集的预测
KNN算法的实现第一次写机器学习算法,写的是KNN预测iris数据集、不会矩阵运算,实现起来很呆,但是总归还是实现了import pandas as pdfrom math import distk = int(input("请输入k值(不能输入三的倍数!):"))dataTest = pd.read_csv('iristest.csv', header=None).valuestrainData = pd.read_csv('iristrain.csv', header=None).valu原创 2021-10-29 10:44:52 · 852 阅读 · 0 评论