深度学习
文章平均质量分 86
hackerlee0008
16602759832
展开
-
关于梯度下降batch-GD,SGD,Mini-batch-GD,Stochastic GD,Online-GD的介绍
梯度下降:是求一个函数最小值的一阶迭代优化算法。 为了使用梯度下降找到函数的局部最小值,可以采取与当前点的函数的梯度(或近似梯度)的负值成比例的步骤。 如果取而代之的是与梯度正相关的步骤,则接近该函数的局部最大值; 该程序然后被称为梯度上升。 梯度下降也被称为最速下降。 但是,梯度下降不应该与用于近似积分的最陡下降的方法混淆。 batch、mini-batch、SGD、online的区别在于训原创 2018-01-22 20:12:01 · 2214 阅读 · 0 评论 -
深度学习中的epoch、 iteration、batchsize和dropout的含义
1.batchsize: 批大小。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练; 2.iteration: 1个iteration等于使用batchsize个样本训练一次; 3.epoch: 1个epoch等于使用训练集中的全部样本训练一次; 举个例子,训练集有1000个样本,batchsize=10,那么: 训练完整个样本集需要: 100次原创 2018-01-22 20:26:47 · 3680 阅读 · 2 评论 -
最好用的 AI 开源数据集 Top 39:计算机视觉、NLP、语音等 6 大类(资源)
本文按计算机视觉、自然语言处理、语音识别、地理空间数据等人工智能的子领域分类,精心整理,每个数据集均附有下载链接,是做 AI 研究不容错过资源。今天,构造AI或机器学习系统比以往任何时候都更加容易。我们有许多开源的最前沿的工具,如TesorFlow,Torch,Spark 等,也有 AWS、Google Cloud 以及其他云服务提供商提供的大量计算力,这意味着你可以悠哉地一边喝着咖啡一边用 ...原创 2018-03-22 14:17:41 · 4334 阅读 · 1 评论 -
必备的10种机器学习算法
可以说,机器学习从业者都是个性迥异的。虽然其中一些人会说“我是X方面的专家,X可以在任何类型的数据上进行训练”,其中,X =某种算法;而其他一些人则是“能够在适合的工作中施展其才华”。他们中的很多人认可“涉猎所有行业,而是其中一个领域的专家”策略,即他们在一个领域内拥有一个深厚的专业知识,并且对机器学习的不同领域有所了解。也就是说,没有人能否认这样的事实:作为数据科学家的实践者,我们必须了...原创 2018-03-21 15:28:35 · 649 阅读 · 0 评论 -
深度学习128篇论文,21大领域(资源帖)
从全局到枝干、从经典到前沿、从理论到应用、还有最新的研究…,所有你不需要的需要的,现在不需要的未来需要的,你不需要的周边小伙伴需要的…反正全都在这了。拿走不谢,就在AI科技大本营。对于大多数想上手深度学习的小伙伴来说,“我应当从那篇论文开始读起?”这是一个亘古不变的话题。而对那些已经入门的同学来说,了解一下不同方向的论文,也是不时之需。有没有一份完整的深度学习论文导引,让所有人都可...原创 2018-03-21 15:37:39 · 6912 阅读 · 0 评论