元启发式算法在特征选择及多目标优化问题中的应用
1. 特征选择
特征选择的目标是寻找最优特征子集,以提高训练分类器的分类准确率,同时间接降低计算时间和成本,在数据挖掘和分析中具有重要意义。根据评估标准,常见的特征选择方法可分为以下三类:
- 过滤式方法 :基于数据的内在属性选择关键特征,独立于任何学习算法。利用信息理论、距离和粗糙集理论等指标来衡量特征的重要性。
- 包裹式方法 :依赖学习算法或分类器评估所选特征子集的重要性,采用一系列搜索策略来获取具有最高重要性值的最佳特征子集。通常,包裹式方法的分类性能优于过滤式方法,但计算时间更长,尤其是在处理大规模数据时。
- 嵌入式方法 :旨在克服过滤式和包裹式方法的问题。与包裹式方法相比,嵌入式方法在计算方面更高效;与过滤式方法相比,嵌入式方法考虑了分类器的偏差。
1.1 相关研究成果
许多研究人员提出了不同的特征选择方法,以下是一些具体的方法及其特点:
|方法|类型|特点|
| ---- | ---- | ---- |
|HGSO|包裹式|基于亨利气体溶解度算法的特征选择方法,在18个UCI数据集上进行测试,表现优于其他六种元启发式算法。|
|BIHHO|包裹式|通过将樽海鞘群算法与原始哈里斯鹰优化算法杂交,改进了搜索能力,并开发了二进制版本作为特征选择方法。|
|TMGWO|包裹式|将灰狼优化算法与两阶段变异相结合,用于解决分类问题的特征选择,通过Sigmoid函数将连续搜索空间转换为二进制空间。|
|HHO - SVM、HH
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



