网络安全 基于scrapy框架与selenium、openpyxl库爬取国外各国家疫情统计汇总信息

网络安全 基于scrapy框架与selenium、openpyxl库爬取国外各国家疫情统计汇总信息

数据来源
https://voice.baidu.com/act/newpneumonia/newpneumonia/

思路
由于目标页面中的数据是动态加载出来的,所以直接发起请求得到的响应是不包含任何有用数据的,所以需要使用selenium的浏览器驱动器进行请求发送并获得包含数据的响应。同时继续观察页面发现,初始加载的页面只包含前面一部分数据,剩余数据需要手动点击“展开全部”才能加载全部数据,所以还需要使用动作链进行模拟点击操作。获取到的响应解析后都存储到excel表格中,方便后续的使用。
在这里插入图片描述

起始url即为目标网站,但是此次请求获得的响应是不包含数据的,所以不能直接将该响应用于解析,需要在下载中间件中进行拦截和篡改。下载中间件拦截后由浏览器驱动器再次对该网站发起请求,然后使用动作链,找到并模拟点击“展开全部”,获得到包含完整数据的响应,再将该响应封装后返回给爬虫进行解析。

    def process_response(self, request, response, spider):
        # Called with the response returned from the downloader.

        # Must either;
        # - return a Response object
        # - return a Request object
        # - or raise IgnoreRequest
        print('开始请求……')
        spider.bro.get(request.url)  # 拦截响应,重新请求获取完整响应
        actions = ActionChains(spider.bro)
        actions.click(spider.bro.find_element_by_xpath('//*[@id="foreignTable"]/div/span')).perform()  # 点击“展开全部”
        actions.release()  # 释放动作链
        page_text = spider.bro.page_source
        new_response = http.HtmlResponse(url=request.url, body=page_text, encoding='utf-8', request=request)  # 篡改响应为新请求的完整的页面
        return new_response

使用xpath对响应进行解析,解析到的数据存储在item中提交给管道。

class NewCoronaCrawlerItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    area = scrapy.Field()  # 地区
    new = scrapy.Field()  # 新增
    total = scrapy.Field()  # 累计
    cured = scrapy.Field()  # 治愈
    death = scrapy.Field()  # 死亡
    def parse(self, response, **kwargs):
        print('开始解析……')
        tr_list = response.xpath('//*[@id="foreignTable"]/table/tbody/tr/td/table/tbody/tr')
        for tr in tr_list:
            data = tr.xpath('./td//text()').getall()
            item = NewCoronaCrawlerItem()
            item['area'] = data[0]
            item['new'] = data[1]
            item['total'] = data[2]
            item['cured'] = data[3]
            item['death'] = data[4]
            yield item

管道中使用openpyxl打开excel表格,新建一个工作表,并命名为“年-月-日_时-分-秒”,将所有数据写入并保存后关闭。

class NewCoronaCrawlerPipeline:
    wb = None
    ws = None

    def open_spider(self, spider):
        self.wb = openpyxl.load_workbook(r'新型冠状病毒肺炎国外各国家疫情统计汇总.xlsx')  # 打开工作簿
        self.ws = self.wb.create_sheet(time.strftime('%Y-%m-%d_%H-%M-%S', time.localtime(time.time())))  # 新建工作表,命名为年月日时分秒
        self.ws.append(['地区', '新增', '累计', '治愈', '死亡'])  # 插入表头

    def process_item(self, item, spider):
        self.ws.append([item['area'], int(item['new']), int(item['total']), int(item['cured']), int(item['death'])])  # 插入一行数据
        return item

    def close_spider(self, spider):
        print('保存数据……')
        self.wb.save(r'新型冠状病毒肺炎国外各国家疫情统计汇总.xlsx')
        self.wb.close()
        print('保存完成!')

同时为了提高效率可以将浏览器驱动器设置为无头浏览器,并且设置规避检测提高安全性。

    def __init__(self):
        super().__init__()
        # 设置为无头浏览器
        chrome_options = Options()
        chrome_options.add_argument('--headless')
        chrome_options.add_argument('--disable-gpu')
        # 规避检测
        option = webdriver.ChromeOptions()
        option.add_experimental_option('excludeSwitches', ['enable-automation'])
        self.bro = webdriver.Chrome(executable_path=r'chromedriver.exe', options=option, chrome_options=chrome_options)

对于起始请求,需要修改配置文件中的信息不遵守robots.txt协议,并且进行UA伪装,同时开启下载中间件和管道,修改显示的日志等级。

结果

在这里插入图片描述
在这里插入图片描述

使用Scrapy框架结合Selenium进行新闻爬取的分析过程如下: 1. 确定目标:确定要爬取的新闻网站,并了解其页面结构、数据位置以及需要的数据类型。 2. 配置Scrapy项目:创建一个Scrapy项目,包括建立项目目录结构、配置爬虫规则、编写爬虫代码等。 3. 配置Selenium:将Selenium集成到Scrapy项目中,通过pip安装Selenium,并下载相应的浏览器驱动程序(如ChromeDriver)。 4. 编写爬虫代码:在Scrapy项目中的爬虫代码中,创建一个爬虫类,并在该类中定义网站链接的解析方法和数据提取规则。 5. 使用Selenium进行网页交互:在网页解析方法中,使用Selenium启动浏览器,并访问目标网址,以便进行网页的渲染和加载,确保获取到动态生成的数据。 6. 分析网页结构和数据位置:使用Selenium的相关方法定位并提取所需数据的位置,并将其保存到Scrapy的Item对象中。 7. 数据持久化:将提取到的数据保存到数据或者以其他方式进行持久化,可以使用Scrapy提供的Pipeline功能。 8. 运行爬虫:运行Scrapy项目,爬虫会按照预定的规则进行网页解析,并将数据提取、保存、持久化。 9. 数据分析:根据需求进行数据分析,可以使用Python的数据分析工具(如Pandas、Numpy等)对爬取到的新闻数据进行统计、处理、可视化等操作。 10. 定期维护:定期监控目标网站的变化,更新爬虫代码,以确保爬虫的正常运行和数据的准确性。 通过使用Scrapy框架结合Selenium进行新闻爬取,我们可以实现对需要JavaScript渲染的网站的爬取,提取所需数据并进行后续的数据分析。同时,Scrapy提供了强大的爬虫功能,包括自动处理请求、解析网页、处理数据等,能够提高爬虫的效率和稳定性。而Selenium的集成则可以保证获取到完整的动态生成的数据,使爬虫更具灵活性和适应性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值