Iceforest的博客

数据分析数据挖掘学习者,机器学习游客

李宏毅机器学习(四)

1.从基础概率推导到贝叶斯公式 首先需要了解概率的概念:概率是对随机事件发生的可能性的度量,在0-1之间表示事件发生可能性的大小,越接近1表示随机事件发生的可能性越大。 其次需要了解条件概率的概念:条件概率是指事件A在另一个事件B已经发生的条件下发生的概率,用P(A|B)来表示。如果两个事件相...

2019-05-25 20:00:04

阅读数 26

评论数 0

PM2.5预测

本篇为李宏毅机器学习第三次作业内容,不使用sklearn包来手写线性回归完成对PM2.5的预测,先说本次代码的不足和欠缺思考的部分,首先对数据的特征没有进行过多的处理,如异常值和标准化,其次使用的是最简单的一次线性模型,可能存在拟合程度不够,最后采用的梯度下降方法不够优化,没有使用Adagrad方...

2019-05-22 18:35:06

阅读数 88

评论数 0

随机梯度下降

随机梯度下降(SGD)是一种简单但又非常高效的方法,主要用于凸损失函数下线性分类器的判别式学习,例如(线性)支持向量机和Logistic 回归。 尽管 SGD 在机器学习社区已经存在了很长时间, 但是最近在 large-scale learning (大规模学习)方面 SGD 获得了相当大的关注。...

2019-05-15 18:56:01

阅读数 23

评论数 0

支持向量机

支持向量机 (SVMs)可用于以下监督学习算法分类,回归和异常检测. 支持向量机的优势在于: 在高维空间中非常高效. 即使在数据维度比样本数量大的情况下仍然有效. 在决策函数(称为支持向量)中使用训练集的子集,因此它也是高效利用内存的. 通用性: 不同的核函数核函数与特定的决策函数一一...

2019-05-15 17:34:23

阅读数 17

评论数 0

内核岭回归

Kernel ridge regression (KRR) (内核岭回归) 它所学习到的在空间中不同的线性函数是由不同的内核和数据所导致的。对于非线性的内核,它与原始空间中的非线性函数相对应。 由KernelRidge学习的模型的形式与支持向量回归(SVR) 是一样的。但是他们使用不同的损失函...

2019-05-15 14:44:21

阅读数 19

评论数 0

sklearn文档-线性和二次判别分析

1.线性判别分析 Linear Discriminant Analysis(线性判别分析)(sklearn.discriminant_analysiss.LinearDiscriminantAnalysis) 和 Quadratic Discriminant Analysis (二次判别分析)(...

2019-05-15 14:17:33

阅读数 9

评论数 0

sklearn学习

1.广义线性模型 如果是预测值, 在整个模块中,我们定义向量 作为coef_,定义 作为intercept_。 1.1 普通最小二乘法 LinearRegression拟合一个带有系数 的线性模型,使得数据集实际观测数据和预测数据(估计值)之间的残差平方和最小。其数学表达式为: L...

2019-05-15 12:33:11

阅读数 13

评论数 0

李宏毅机器学习-part1

目录 1.中心极限定理的概念 2.正态分布 3.极大似然估计 4.推导回归Loss function 5.损失函数与凸函数之间的关系 6.全局最优和局部最优 7.推导梯度下降公式 8.梯度下降的代码实现 9.正则化公式的推导 10.L0-Norm,L1-Norm,L2-Norm...

2019-05-13 17:35:58

阅读数 7

评论数 0

统计学知识梳理--NO.4

本次学习包含内容:线性回归,卡方分布,,方差分析和演绎推理。 本次学习参考内容: 1.可汗学院统计学公开课62-81集 2.《深入浅出统计学》对应知识点翻一翻 参考:https://blog.csdn.net/sm376624607/article/details/88093103 目...

2019-03-05 17:28:59

阅读数 146

评论数 0

统计学知识梳理--NO..3

本次学习涵盖知识点:假设检验 本次学习参考内容: 1.可汗学院统计学公开课47-61集 2.《深入浅出统计学》对应知识点翻一翻 知识点清单 1.假设检验 假设检验的定义:通常设定两个假设,零假设备择假设,然后通过拒绝零假设,来接受备择假设,从而完成检验。通常假设零假设是正确的,如果零...

2019-03-03 17:55:41

阅读数 40

评论数 0

达观杯数据竞赛 01

比赛地址 这是一个NLP类型的数据比赛,小白一个,初步了解 学习目标: 1. 下载数据,读取数据,观察数据 2. 将训练集拆分为训练集和验证集。要求:数据3-7分,随机种子2019 3. 分享自己对数据以及赛题的理解和发现 首先导入读取数据和分割数据所需要用的Python包 im...

2019-03-01 20:54:17

阅读数 61

评论数 0

统计学知识梳理--NO.2

目录 知识点清单 1.中心极限定理 2.置信区间 3.伯努利分布 4.误差范围 5.小样本容量置信区间 本次学习涵盖知识点:中心极限定理,置信区间 本次学习参考内容: 1.可汗学院统计学公开课35-46集 2.《深入浅出统计学》对应知识点翻一翻 知识点清单 1.中心极限定...

2019-03-01 17:12:42

阅读数 63

评论数 0

转载-CSDN-markdown语法之如何使用LaTeX语法编写数学公式

后续完善。。。 https://blog.csdn.net/lanxuezaipiao/article/details/44341645/

2019-03-01 16:33:12

阅读数 15

评论数 0

统计学基础知识梳理--NO.1

本次学习涵盖的知识点:统计学的基本概念,二项分布,泊松分布,大数定律,正态分布 本次学习参考内容: 1.可汗学院统计学公开课 2.《深入浅出统计学》 知识点清单 1.均值 中位数 众数 均值u的计算方式:,表示样本的值,表示对所有的样本点求和,是样本的个数,用一句话来概括就是将一批数...

2019-02-28 17:59:12

阅读数 74

评论数 0

《看见统计》--可视化的统计学习入门

美国布朗大学的统计学可视化教材,很好的统计学入门资料,可以很直观的理解统计学的概念,机器学习小白必备,推荐给大家。 链接:https://seeing-theory.brown.edu/cn.html 共六个章节,分别为: 基础概率论 进阶概率论 概率分布 统计推断:频率学派 ...

2019-02-26 15:22:02

阅读数 48

评论数 0

SPSSModeler的下载与安装

下载地址:https://www.ibm.com/analytics/cn/zh/technology/spss/ 然后下载适合自己电脑的版本,有Windows和Mac版,然后直接默认安装路径即可

2018-09-26 09:02:17

阅读数 188

评论数 0

SPSSModeler的下载与安装

下载地址:https://www.ibm.com/analytics/cn/zh/technology/spss/ 然后下载适合自己电脑的版本,有Windows和Mac版,然后直接默认安装路径即可

2018-09-26 09:02:17

阅读数 259

评论数 0

SPSSModeler的下载与安装

下载地址:https://www.ibm.com/analytics/cn/zh/technology/spss/ 然后下载适合自己电脑的版本,有Windows和Mac版,然后直接默认安装路径即可

2018-09-26 09:02:17

阅读数 280

评论数 0

SPSSModeler的下载与安装

下载地址:https://www.ibm.com/analytics/cn/zh/technology/spss/ 然后下载适合自己电脑的版本,有Windows和Mac版,然后直接默认安装路径即可

2018-09-26 09:02:17

阅读数 197

评论数 0

SPSSModeler的下载与安装

下载地址:https://www.ibm.com/analytics/cn/zh/technology/spss/ 然后下载适合自己电脑的版本,有Windows和Mac版,然后直接默认安装路径即可

2018-09-26 09:02:17

阅读数 957

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭