23、机器学习中使用分类器和聚类的智能医疗数据分析

机器学习中使用分类器和聚类的智能医疗数据分析

1. 引言

医疗行业在全球范围内广泛分布,旨在为患者提供服务。如今,该行业面临着前所未有的大量电子数据,且数据增长速度极快。若不能开发出合适的方法从海量医疗数据中挖掘出潜在的经济价值,这些数据不仅会变得杂乱无章,还需要大量的存储空间和管理成本。

近几十年来,数据挖掘技术取得了显著进展,通过对各种事物的行为和未来趋势进行预测,对人类生活方式的变革产生了重大影响,能够将存储的数据转化为有价值的信息。这些策略非常适合在医疗环境中提供决策支持。为了缩短诊断时间并提高诊断准确性,医疗行业需要一个实用的框架,以提供更廉价、更快捷的诊断途径。临床决策支持系统近年来受到极大关注,它应用了各种数据挖掘技术,帮助医生诊断具有相似症状的患者疾病。朴素贝叶斯分类器作为一种著名的人工智能工具,近年来被广泛用于决策支持中的各种疾病预测,比一些复杂的程序更适合医疗临床诊断。

2. 动机

信息技术在医疗保健中发挥着重要作用,它有助于存储、分析和共享医疗相关信息。许多医疗服务提供者依靠健康信息技术向公众提供疾病信息。其中一项进展是电子健康记录(EHR),用于长期以数字化形式存储患者信息。电子健康记录包含患者的疾病信息、实验室测试报告、病史、治疗描述、影像扫描报告等,这些信息可以在实验室、药房、专家等不同部门之间安全共享。

3. 挑战

随着计算机技术的广泛应用,临床健康数据显著增加,数据驱动的临床大数据分析技术应运而生,为临床健康的智能识别提供了支持。然而,由于临床大数据格式混杂、存在大量不完整记录和噪音,分析临床大数据仍然是一项挑战。传统的人工智能策略无法有效挖掘临床大数据中丰富的信息,而深度学习通过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值