openLooKeng,Make Big Data Simplified
openLooKeng是一款开源的高效数据虚拟化分析引擎。在使用openLooKeng过程中,社区一小伙伴遇到数据查询存在不同步的问题;对此,该小伙伴非常给力,向社区提供了解决方案。我们非常感谢他的支持,也希望本篇博客对其他小伙伴有帮助。
欢迎访问openLooKeng官网
https://openlookeng.io
社区代码仓
https://gitee.com/openlookeng
本期分享
问题
openLooKeng的查询存在不同步的问题,现在需要解决这个问题。
经过分析,查询读的是Cache。在AA模式(Active/Active Mode)下,一个节点修改了Metastore ,另外一个节点不会得到通知,所以不会使缓存失效。问题出现在AA模式下缓存不同步的问题。
解决办法
目前openLooKeng的缓存模式只有Guava。
在异步的时候存在数据不同步的问题。解决办法:
- 使用redis,redis作为分布式缓存是相当优秀。支持很多数据类型,支持cluster模式。但是这个方法会引入新的技术,会让部署困难。最小化部署,尽量不引入第三方依赖服务;
- 考虑到服务已经有Hazelcast了,可以考虑用Hazelcast作为缓存来使用。(注 其实还有一种方案,让 Hazelcast作为广播用,当发生更新数据的时候,同时通知两个节点的Cache失效) 现在采用Hazelcast作为分布式缓存,同时保留以前的Guava缓存。
两套缓存可以让用户选择,一个是local的,一个是distributed;架构模式如下:
读写策略模式如下:
Cache Aside Pattern,Delete the existing Cache when writing the database。Cache Aside Pattern能有效避免并发问题。
Cache Aside的优点:
当写操作发生时,假设淘汰缓存作为对缓存通用的处理方式,又面临两种抉择:
(1)先写数据库,再淘汰缓存
(2)先淘汰缓存,再写数据库
我们假设:两个并发操作,一个是更新操作,另一个是查询操作,更新操作删除缓存后,查询操作没有命中缓存,先把老数据读出来后放到缓存中,然后更新操作更新了数据库。于是,在缓存中的数据还是老的数据,导致缓存中的数据是脏的,而且还一直这样脏下去了。所以这个设计是错误的,不建议使用。
一个是查询操作,一个是更新操作的并发,首先,没有了删除Cache数据的操作了,而是先更新了数据库中的数据,此时,缓存依然有效,所以,并发的查询操作拿的是没有更新的数据,但是,更新操作马上让缓存的失效了,后续的查询操作再把数据从数据库中拉出来。
Hazelcast 学习
Hazelcast作为一个分布式机制,可以用Hazelcast的Imap作为分布式缓存。
这里需要注意的是由于Hetumetastore存储有六个缓存,需要对每个缓存实例化。不能用一套。
IMap<Integer, List<String>> clusterMap1 = instance.getMap("MyMap1");
IMap<Integer, List<String>> clusterMap2 = instance.getMap