区间dp+多重背包二进制优化

区间dp

区间的dp大多都是由区间构成的,而我们解题的方法就是把大区间化成小区间,然后对小区间进行处理最后得到我们想要的答案。大部分的区间dp都有明显的特点,我们需要考虑在什么条件下大区间可以转化成小区间然后再找到边界条件,这样就可以列出状态转移方程了。
区间dp经典代码模板
for(int len = 2; len <= n; len++)//枚举区间长度
{
    for(int i = 1; i < n; i++)//枚举区间的起点
	{
        int j = i+len-1;//根据起点和长度得出终点
        if(j>n) //符合条件的终点
			break;
        for(int k = i; k <= j; k++)//枚举最优分割点
            f[i][j] = min(f[i][j],f[i][k]+f[k+1][j]+w[i][j]);
    }
}   
通过做的这些题发现,简单题目和难题的区别在于难题相对于简单题更加的复杂,大体的框架和简单题是一样的,但是难题需要在里面添加更多的细节。一不小心就会出错,而且有的细节想不到,想不到要加上这个。
这个经典的代码还可以进行优化,使他从O(n^3)优化到 O(n^2),就是在原来的基础上再多开一个数组,在枚举分割点的时候缩小查询范围,用空间换取时间。
优化的代码
for(int len = 2; len <= n; len++)
{
    for(int i = 1; i<= n; i++)
	{
		int j = i+len-1;
		if(j>n) 
			break;
		for(int k = s[i][j-1]; k<= s[i+1][j]; k++)
		{
	    	if(f[i][j]>f[i][k]+f[k+1][j]+w[i][j])
			{
				f[i][j]=f[i][k]+f[k+1][j]+w[i][j];
				s[i][j]=k;
	    	}
		}
    }
}
多重背包二进制优化模板(这是主体框架,根据需要自行修该)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#define inf 0x3f3f3f3f   
#define N 1000    
using namespace std;
int V;      
int m[N],c[N],w[N],f[N];
int max(int a,int b){return a>b?a:b;}
void ZeroOnePack(int cost,int weight)
{
    for(int v = V; v >= cost; v--) 
		f[v] = max(f[v],f[v-cost]+weight);
}
void CompletePack(int cost,int weight)
{
    for(int v = cost; v <= V; v++)
        f[v] = max(f[v],f[v-cost]+weight);
}
void MultiplePack(int cost,int weight,int amount)
{
    int k;
    if(cost*amount>=V)
    {
        CompletePack(cost,weight);
        return;
    }
    k = 1;
    while(k<amount)
    {
        ZeroOnePack(k*cost, k*weight);
        amount = amount- k;
        k = k * 2;
    }
    ZeroOnePack(amount*cost, amount*weight);
}
int main()
{
    int n;
    scanf("%d %d",&n,&V);
    // 两种不同的初始化方式 
    //memset(f,0,sizeof(f[0])*(V+1));              // 只希望价格尽量大 
    //memset(f,-M,sizeof(f[0])*(V+1));f[0]=0;      // 要求恰好装满背包 
    for(int i = 1; i <= n; i++) 
		scanf("%d %d %d",&m[i],&c[i],&w[i]);
    for(int i = 1; i <= n; i++) 
		MultiplePack(c[i],w[i],m[i]);
    printf("%d\n",f[V]);
    return 0;
}
 
使用优化算法,以优化VMD算法的惩罚因子惩罚因子 (α) 和分解层数 (K)。 1、将量子粒子群优化(QPSO)算法与变分模态分解(VMD)算法结合 VMD算法背景: VMD算法是一种自适应信号分解算法,主要用于分解信号为不同频率带宽的模态。 VMD的关键参数包括: 惩罚因子 α:控制带宽的限制。 分解层数 K:决定分解出的模态数。 QPSO算法背景: 量子粒子群优化(QPSO)是一种基于粒子群优化(PSO)的一种改进算法,通过量子行为模型增强全局搜索能力。 QPSO通过粒子的量子行为使其在搜索空间中不受位置限制,从而提高算法的收敛速度与全局优化能力。 任务: 使用QPSO优化VMD中的惩罚因子 α 和分解层数 K,以获得信号分解的最佳效果。 计划: 定义适应度函数:适应度函数根据VMD分解的效果来定义,通常使用重构信号的误差(例如均方误差、交叉熵等)来衡量分解的质量。 初始化QPSO粒子:定义粒子的位置和速度,表示 α 和 K 两个参数。初始化时需要在一个合理的范围内为每个粒子分配初始位置。 执行VMD分解:对每一组 α 和 K 参数,运行VMD算法分解信号。 更新QPSO粒子:使用QPSO算法更新粒子的状态,根据适应度函数调整粒子的搜索方向和位置。 迭代求解:重复QPSO的粒子更新步骤,直到满足终止条件(如适应度函数达到设定阈值,或最大迭代次数)。 输出优化结果:最终,QPSO算法会返回一个优化的 α 和 K,从而使VMD分解效果最佳。 2、将极光粒子(PLO)算法与变分模态分解(VMD)算法结合 PLO的优点与适用性 强大的全局搜索能力:PLO通过模拟极光粒子的运动,能够更高效地探索复杂的多峰优化问题,避免陷入局部最优。 鲁棒性强:PLO在面对高维、多模态问题时有较好的适应性,因此适合海上风电时间序列这种非线性、多噪声的数据。 应用场景:PLO适合用于优化VMD参数(α 和 K),并将其用于风电时间序列的预测任务。 进一步优化的建议 a. 实现更细致的PLO更新策略,优化极光粒子的运动模型。 b. 将PLO优化后的VMD应用于真实的海上风电数据,结合LSTM或XGBoost等模型进行风电功率预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值