hdu4056Draw a Mess(线段树解法)

题目请戳这里

题目大意:给一个n*m的矩形,有9中颜色,4种集合图形,q个操作,每个操作是将矩形中指定位置的某种几何形状的格子染相应的颜色。求最后9种颜色相应的数量。

题目分析:第一眼感觉就是线段树,一开始想的是写个二维的线段树,然后就在想怎么更新比较快。发现二维线段树除了更新矩形外对于其他3个图形的更新毫无优势。如果一行一行的更新,太慢了。一直在纠结怎样快速成段更新其他3种几何图像。最后1个小时决定敲一下,敲了一会也放弃了。还好没有继续敲。

这题官方题解给的是O(n*m)的线性做法。不过线段树也是可以做的。只是要写n棵线段树,而不是二维的!!其实写n棵线段树也容易爆内存的,何况二维的。再考虑到每次对一个格子涂色后就会覆盖上一次的颜色,所以每个格子最终的颜色取决于最后一次涂的颜色。所以要把查询倒着做!!涂过颜色的格子就删掉。这样线段树就比较容易完成了。不过效率并不是十分高,踩线过。。

唉,2道线段树,一道都没出,到现在了,还是这么弱啊。。。

详情请见代码:

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 201;
const int M = 50001;
struct nd
{
    char c;
    int p[5];
}ask[M];
int m,n,q;
int ans[11];
struct segt
{
    short int tree[M<<2];
    void init(int num,int s,int e)
    {
        if(s == e)
        {
            tree[num] = 1;
            return;
        }
        int mid = (s + e)>>1;
        init(num<<1,s,mid);
        init(num<<1|1,mid + 1,e);
        tree[num] = tree[num<<1] + tree[num<<1|1];
    }
    int query(int num,int s,int e,int l,int r)
    {
        if(s == l && e == r)
            return tree[num];
        if(tree[num] == 0)
            return 0;
        int mid = (s + e)>>1;
        if(r <= mid)
            return query(num<<1,s,mid,l,r);
        else
        {
            if(l > mid)
                return query(num<<1|1,mid + 1,e,l,r);
            else
                return query(num<<1,s,mid,l,mid) + query(num<<1|1,mid + 1,e,mid + 1,r);
        }
    }
    void insert(int num,int s,int e,int l,int r)
    {
        if(s == l && e == r)
        {
            tree[num] = 0;
            return;
        }
        if(tree[num] == 0)
            return;
        int mid = (s + e)>>1;
        if(r <= mid)
            insert(num<<1,s,mid,l,r);
        else
        {
            if(l > mid)
                insert(num<<1|1,mid + 1,e,l,r);
            else
            {
                insert(num<<1,s,mid,l,mid);
                insert(num<<1|1,mid + 1,e,mid + 1,r);
            }
        }
        tree[num] = tree[num<<1] + tree[num<<1|1];
    }
}lcm[N];

void Circle(int id)
{
    int i,l,r;
    for(i = ask[id].p[0] + 1 - ask[id].p[2];i <= ask[id].p[0] + 1 + ask[id].p[2];i ++)
    {
        if(i < 1)
            continue;
        if(i > n)
            break;
        int tmp = (int)sqrt((double)(ask[id].p[2] * ask[id].p[2] - (i - ask[id].p[0] - 1) * (i - ask[id].p[0] - 1)));
        l = ask[id].p[1] + 1 - tmp;
        r = ask[id].p[1] + 1 + tmp;
        if(l < 1)
            l = 1;
        if(r > m)
            r = m;
        if(l > r)
            continue;
        tmp = lcm[i].query(1,1,m,l,r);
        if(tmp)
        {
            ans[ask[id].p[3]] += tmp;
            lcm[i].insert(1,1,m,l,r);
        }
    }
}
void Diamond(int id)
{
    int i,l,r;
    for(i = ask[id].p[0] + 1 - ask[id].p[2];i <= ask[id].p[0] + 1 + ask[id].p[2];i ++)
    {
        if(i < 1)
            continue;
        if(i > n)
            break;
        l = ask[id].p[1] + 1 - ask[id].p[2] + abs(i - ask[id].p[0] - 1);
        r = ask[id].p[1] + 1 + ask[id].p[2] - abs(i - ask[id].p[0] - 1);
        if(l < 1)
            l = 1;
        if(r > m)
            r = m;
        if(l > r)
            continue;
        int tmp = lcm[i].query(1,1,m,l,r);
        if(tmp)
        {
            ans[ask[id].p[3]] += tmp;
            lcm[i].insert(1,1,m,l,r);
        }
    }
}
void Triangle(int id)
{
    int i,l,r;
    int h = (ask[id].p[2] + 1)>>1;
    int cnt = 0;
    for(i = ask[id].p[0] + h;i >= ask[id].p[0] + 1;i --,cnt ++)
    {
        if(i > n)
            continue;
        l = ask[id].p[1] + 1 - cnt;
        r = ask[id].p[1] + 1 + cnt;
        if(l < 1)
            l = 1;
        if(r > m)
            r = m;
        int tmp = lcm[i].query(1,1,m,l,r);
        if(tmp)
        {
            ans[ask[id].p[3]] += tmp;
            lcm[i].insert(1,1,m,l,r);
        }
    }
}
void Rectangle(int id)
{
    int i,l,r;
    l = ask[id].p[1] + 1;
    r = ask[id].p[1] + ask[id].p[3];
    if(l > r)
        return;
    if(r > m)
        r = m;
    for(i = ask[id].p[0] + 1;i <= ask[id].p[0] + ask[id].p[2];i ++)
    {
        if(i > n)
            break;
        int tmp = lcm[i].query(1,1,m,l,r);
        if(tmp)
        {
            ans[ask[id].p[4]] += tmp;
            lcm[i].insert(1,1,m,l,r);
        }
    }
}
char op[12];
int main()
{
    int i;
    while(scanf("%d",&n) != EOF)
    {
        scanf("%d%d",&m,&q);
        for(i = 1;i <= n;i ++)
            lcm[i].init(1,1,m);
        memset(ans,0,sizeof(ans));
        for(i = 1;i <= q;i ++)
        {
            scanf("%s",op);
            ask[i].c = op[0];
            for(int j = 0;j < 4;j ++)
                scanf("%d",&ask[i].p[j]);
            if(*op == 'R')
                scanf("%d",&ask[i].p[4]);
        }
        for(i = q;i >= 1;i --)
        {
            switch(ask[i].c)
            {
            case 'C':Circle(i);break;
            case 'D':Diamond(i);break;
            case 'T':Triangle(i);break;
            case 'R':Rectangle(i);break;
            }
        }
        for(i = 1;i < 9;i ++)
            printf("%d ",ans[i]);
        printf("%d\n",ans[i]);
    }
    return 0;
}
//4484MS	53624K


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值