zoj3284Matrix Processing(二维树状数组)

题目提供一个矩阵并进行三种操作:行优先、列优先的区间加法和查询单点元素值。由于操作次数多,暴力解决会导致超时。通过分析,发现可以使用二维树状数组优化,实现区间修改和单点查询。更新时,针对不完整矩形的更新区域,可以采用加法或减法策略分解,本文采用减法方法,详细实现见代码。
摘要由CSDN通过智能技术生成

题目请戳这里

题目大意:给一个矩阵,然后q个操作。有3种操作类型:

op = 0:按行优先原则从(x1,y1)到(x2,y2)所有元素都加一个k。

op = 1:按列优先原则从(x1,y1)到(x2,y2)所有元素都加上k。

op = 2:查询(x,y)处元素值。

题目分析:矩阵不大,但是查询很多。暴力会超时。于是高兴的写了一个二维线段树,结果华丽丽的TLE了。然后又不断调整姿势,还是TLE。。。

唉,二维线段树,感觉再也不会爱了。。。快哭了

这道题仔细看只有2种操作:区间修改和单点查询。所以这题可以直接用二维树状数组做。因为是修改区间查询点,所以要向下修改向上查询。

更新的时候,以行优先为例,得出来的更新区域不是一个完整的矩形。所以可以考虑将更新区域分解。有2种分法:做加法和做减法。2种方法都差不多,都是将更新区域分成3部分。我是用的减法,感觉方便些。

详情请见代码:

#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;
const int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值