poj3737UmBasketella三分法求极值

该博客介绍了如何解决一个数学问题,即给定圆锥体表面积,如何找到圆锥体的最大体积及其底面半径和高。通过分析圆锥体的表面积公式,推导出体积表达式,并指出体积是关于底面半径的二次函数,从而采用三分法寻找极值。博主提供了详细的解题思路和代码实现。

题目地址

题目大意:给定一个圆锥体的表面积s,求这个圆锥体的最大体积以及圆锥体体积最大时的底面半径和高。

题目分析:题意十分简单明了。根据圆锥体表面积公式:π * r * r + π * r * l = s(r是底面半径,l是母线长),l = sqrt(h* h + r * r),带入表面积方程可得圆锥高h = sqrt((s/π/r - r)^2 - r * r),根据此式可得一不等式:s/π/r >2r。由此得出底面半径上界为sqrt(s/2π).继续整理方程可得圆锥体体积v = π*sqrt(s^2*r^2/π/π - 2sr^4/π)/3。可以很清楚的看出,圆锥体的体积v是关于圆锥体底面半径的一个2次方程,开口向下,是个凸形图形求极值的问题,很容易想到三分底面半径r。

详情请见代码:

#include <iostream>
#include<cstdio>
#include<cmath>

using namespace std;

#define eps 1e-8
#define PI acos(-1.0)
double s,h,r,v;

double geth(double ra)//求当圆锥底面半径为ra时的高
{
    double hi;
    hi = (s/PI/ra - ra) * (s/PI/ra - ra);
    hi -= (ra * ra);
    if(hi < 0)
        return -1;
    hi = sqrt(hi);
    return hi;
}

int main()
{
    while(scanf("%lf",&s) != EOF)
    {
        double l,r,midl,midr,v1,v2;
        l = 0;
        r = sqrt(s / PI / 2);
        while(r - l > eps)
        {
            midl = (l + r) / 2;
            midr = (r + midl) / 2;
            v1 = geth(midl);
            v2 = geth(midr);
            v1 = PI * midl * midl * v1 / 3;
            v2 = PI * midr * midr * v2 / 3;
            if(v1 > v2)
                r = midr;
            else
                l = midl;
        }
        printf("%.2lf\n%.2lf\n%.2lf\n",v1,geth(midl),midl);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值