/******************************************
题意:给定一个数,判断一个数是否是素数,如果是素数,输出Prime,否则输出最小素因子
对于大素数,通过miller rabin测试可以得出来,但是对于非素数,那么要求输出最小素因子
对于最小素因子,可以通过pollard rho算法得出
费马小定理:假如p是素数,并且(a,p)=1那么a^(p-1)=1(mod p);
威尔逊定理:如果p是素数,(p-1)!=-1(mod p)
费马小定理推论:假如p是素数,且a是正整数,那么a^p=a(mod p);
设n是一个正整数,欧拉函数f(n)定义为不超过n且与n互素的正整数的个数
欧拉定理:设m是一正整数,a是一个整数且(a,m)=1,那么a^f(m)=1(mod m)
miller rabin测试原理:费马小定理
伪素数:a是一正整数,如n是合数且满足a^n=a(mod n),那么n称为以a为基的伪素数
如果存在n不满足a^n=a(mod n),那么n就一定不是素数,当然如果n满足了也不一定是素数
卡迈克尔数:一个合数n,对所以满足(b,n)=1的正整数都有b^(n-1)=1(mod n)。
因此,我们在利用费马小定理来判断素数时,要排除掉卡迈克尔数
二次探测定理:如果p是一个素数,且0<x<p,则方程x^2%p=1的解为x=1或者x=p-1
那么可以根据二次探测定理,在利用费马小定理计算b^n-1%n的过程中增加对整数n的二次探测,一旦发现违背二次探测定理的,就不是素数
******************************************/
#include <iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<cstdlib>
#define N 12
#define Max 1e10
using namespace std;
long long minn;
long long gcd(long long a,long long b)
{
return b==0?a:gcd(b,a%b);
}
long long random(long long n)//产生一个随机数
{
return (long long)((double)rand()/RAND_MAX*n+0.5);
}
long long multi(long long a,long long b,long long n)//计算a*b%n,使用加法来模拟乘法,避免溢出
{
long long ans=0;
a=a%n;
while(b)
{
if(b&1)
{
ans=(ans+a)%n;
}
b>>=1;
a=(a+a)%n;
}
return ans;
}
long long quick_mod(long long a,long long b,long long m)//a^b%m
{
long long ans=1;
a=a%m;
while(b)
{
if(b&1)
{
ans=multi(ans,a,m);
b--;
}
b>>=1;
a=multi(a,a,m);
}
return ans;
}
bool witness(long long a,long long n)//二次探测定理
{
long long m=n-1;
long long j=0;
while(!(m&1))
{
j++;
m=m/2;
}
long long x=quick_mod(a,m,n);
if(x==1||x==n-1)
return false;
while(j--)
{
x=x*x%n;
if(x==n-1)
return false;
}
return true;
}
bool miller_rabin(long long n)//miller测试
{
if(n<2)return false;
if(n==2)return true;
if(n%2==0)return false;
for(long long i=1; i<=N; i++)
{
long long a=random(n-2)+1;
if(witness(a,n))return false;
}
return true;
}
long long pollard1(long long n,long c)
{
long long x=random(n-1)+1,y=x,k=2,i=1;
do
{
i++;
x=(multi(x,x,n)+c)%n;
long long d=gcd(y-x,n);
if(d>1&&d<n)return d;
if(i==k)
{
y=x;
k*=2;
}
}
while(y!=x);
return n;
}
long long pollard(long long n,long long c)//分解
{
long long d;
long long i=1,k=2;
long long x=rand()%n;
long long y=x;
while(1)
{
i++;
x=(multi(x,x,n)+c)%n;
d=gcd(y-x,n);
if(d>1 && d<n )return d;
if(y==x)return n;
if(i==k)
{
y=x;
k=k<<1;
}
}
}
void pollard_min(long long n,long long c)//找最小素因子
{
if(n==1)return;
if(miller_rabin(n))
{
if(n<minn)minn=n;
return ;
}
long long m=pollard(n,c--);
pollard_min(m,c);
pollard_min(n/m,c);
}
int main()
{
//srand(time(NULL));//在poj上不能用srand(time(NULL))
int t;
long long n;
scanf("%d",&t);
while(t--)
{
scanf("%lld",&n);
if(miller_rabin(n))printf("Prime\n");
else
{
minn=Max;
pollard_min(n,240);
printf("%lld\n",minn);
}
}
return 0;
}