POJ1811

/******************************************
题意:给定一个数,判断一个数是否是素数,如果是素数,输出Prime,否则输出最小素因子


对于大素数,通过miller rabin测试可以得出来,但是对于非素数,那么要求输出最小素因子
对于最小素因子,可以通过pollard rho算法得出


费马小定理:假如p是素数,并且(a,p)=1那么a^(p-1)=1(mod p);
威尔逊定理:如果p是素数,(p-1)!=-1(mod p)
费马小定理推论:假如p是素数,且a是正整数,那么a^p=a(mod p);


设n是一个正整数,欧拉函数f(n)定义为不超过n且与n互素的正整数的个数
欧拉定理:设m是一正整数,a是一个整数且(a,m)=1,那么a^f(m)=1(mod m)


miller rabin测试原理:费马小定理
伪素数:a是一正整数,如n是合数且满足a^n=a(mod n),那么n称为以a为基的伪素数


如果存在n不满足a^n=a(mod n),那么n就一定不是素数,当然如果n满足了也不一定是素数
卡迈克尔数:一个合数n,对所以满足(b,n)=1的正整数都有b^(n-1)=1(mod n)。
因此,我们在利用费马小定理来判断素数时,要排除掉卡迈克尔数


二次探测定理:如果p是一个素数,且0<x<p,则方程x^2%p=1的解为x=1或者x=p-1
那么可以根据二次探测定理,在利用费马小定理计算b^n-1%n的过程中增加对整数n的二次探测,一旦发现违背二次探测定理的,就不是素数


******************************************/

#include <iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<cstdlib>
#define N 12
#define Max 1e10
using namespace std;

long long minn;

long long gcd(long long a,long long b)
{
    return b==0?a:gcd(b,a%b);
}

long long random(long long n)//产生一个随机数
{
    return (long long)((double)rand()/RAND_MAX*n+0.5);
}

long long multi(long long a,long long b,long long n)//计算a*b%n,使用加法来模拟乘法,避免溢出
{
    long long ans=0;
    a=a%n;
    while(b)
    {
        if(b&1)
        {
            ans=(ans+a)%n;
        }
        b>>=1;
        a=(a+a)%n;
    }
    return ans;
}

long long quick_mod(long long a,long long b,long long m)//a^b%m
{
    long long ans=1;
    a=a%m;
    while(b)
    {
        if(b&1)
        {
            ans=multi(ans,a,m);
            b--;
        }
        b>>=1;
        a=multi(a,a,m);
    }
    return ans;
}
bool witness(long long a,long long n)//二次探测定理
{
    long long m=n-1;
    long long j=0;
    while(!(m&1))
    {
        j++;
        m=m/2;
    }
    long long x=quick_mod(a,m,n);
    if(x==1||x==n-1)
        return false;
    while(j--)
    {
        x=x*x%n;
        if(x==n-1)
            return false;
    }
    return true;
}

bool miller_rabin(long long n)//miller测试
{
    if(n<2)return false;
    if(n==2)return true;
    if(n%2==0)return false;
    for(long long i=1; i<=N; i++)
    {
        long long a=random(n-2)+1;
        if(witness(a,n))return false;
    }
    return true;
}

long long pollard1(long long n,long c)
{
    long long x=random(n-1)+1,y=x,k=2,i=1;
    do
    {
        i++;
        x=(multi(x,x,n)+c)%n;
        long long d=gcd(y-x,n);
        if(d>1&&d<n)return d;
        if(i==k)
        {
            y=x;
            k*=2;
        }
    }
    while(y!=x);
    return n;
}


long long pollard(long long n,long long c)//分解
{
    long long d;
    long long i=1,k=2;
    long long x=rand()%n;
    long long y=x;
    while(1)
    {
        i++;
        x=(multi(x,x,n)+c)%n;
        d=gcd(y-x,n);
        if(d>1 && d<n )return d;
        if(y==x)return n;
        if(i==k)
        {
            y=x;
            k=k<<1;
        }
    }
}


void pollard_min(long long n,long long c)//找最小素因子
{
    if(n==1)return;
    if(miller_rabin(n))
    {
        if(n<minn)minn=n;
        return ;
    }
    long long m=pollard(n,c--);
    pollard_min(m,c);
    pollard_min(n/m,c);
}


int main()
{
    //srand(time(NULL));//在poj上不能用srand(time(NULL))
    int t;
    long long n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lld",&n);
        if(miller_rabin(n))printf("Prime\n");
        else
        {
            minn=Max;
            pollard_min(n,240);
            printf("%lld\n",minn);
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值