CF1330B题解

题意:

给定一个长为 n n n 序列 a a a ,问是否能分成两个排列,并输出方案

思路:

观察数据范围可以猜出,这题 O ( n ) O(n) O(n) 能解决;

因为两个排列是不重叠的,所以可以考虑枚举分割点,即用 l i l_i li 表示 前 i i i 个数是否能形成一个排列, r i r_i ri 表示后 i i i 个数是否能形成排列,当 l i l_i li r i + 1 r_{i+1} ri+1 同时为真的时候可行,输出 i i i n − i n-i ni 即可;

此题还有一个重要的难题,就是如何判断是一个排列:

比如判断前 i i i 个数是否为排列

  • 必然有前 i i i 个数的最大值为 i i i
  • 任意小于 i i i 的数出现且只出现一次;

当上面两条都成立时必然为一个排列,具体实现见代码。

尽管以上已经为 O ( n ) O(n) O(n) 的可行算法,但是为了实现方便,可以加一些优化:

  • 因为要分成两个排列,所以序列 a a a 的最大值 m a x n maxn maxn 必然在一个排列中, n − m a x n n-maxn nmaxn 必然存在与另一个排列中,所以一个排列的长度为 m a x n maxn maxn,另一个为 n − m a x n n-maxn nmaxn ,这说明了最多只存在两种方案;

  • 因为最多只有两种方案,所以若某一数字出现两次以上,必然不存在方案。

代码:
cin>>t;
while(t--)
{
	memset(vis,0,sizeof(vis));
	memset(l,0,sizeof(l));
	memset(r,0,sizeof(r));
	cin>>n;
	for(int i=1;i<=n;i++)	cin>>a[i];
	int num=0,maxx=0;
	for(int i=1;i<=n;i++)
	{
		maxx=max(maxx,a[i]);
		if(vis[a[i]])	continue;
		if(a[i]<=maxx)
			vis[a[i]]=1,num++;
		if(num==maxx&&num==i)	l[i]=true;
	}
	num=0,maxx=0;
	for(int i=n;i>=1;i--)
	{
		maxx=max(maxx,a[i]);
		if(vis[a[i]])	continue;
		if(a[i]<=maxx)
			vis[a[i]]=1,num++;
		if(num==maxx&&num==(n-i+1))	r[i]=true;
	}
	memset(vis,0,sizeof(vis));
	int ans=0;
	for(int i=1;i<=n-1;i++)
		if(l[i]&&r[i+1])	ans++;
	cout<<ans<<endl;
	for(int i=1;i<=n-1;i++)
		if(l[i]&&r[i+1])	cout<<i<<" "<<n-i<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值