spark09-wordcount程序执行原理

该文章详细介绍了Spark编程中创建配置,读取文件,使用flatMap进行单词拆分,reduceByKey进行词频统计的过程,并提到了任务调度的两种方式:FIFO和公平调度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

val conf: SparkConf = new SparkConf().setMaster("local").setAppName("wordcount")
val context: SparkContext = new SparkContext(conf)
val file: RDD[String] = context.textFile("datas")
val wordcount: RDD[(String, Int)] = file.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
wordcount.collect().foreach(println(_))
context.stop()

1.应用程序会new SparkContext对象

SparkConf 环境配置

SparkEnv 环境

SchedulerBackend 调度后台

TaskScheduler 任务调度

DAGScheduler 作业调度

2.构建依赖

context.textFile("datas")

flatMap(_.split(" "))

reduceByKey(_+_)

3.阶段划分

4.任务划分

每个阶段task的数量是每个阶段的最后一个RDD的分区的数量

5.任务的调度

在spark中默认的调度方式是fifo

一共两个 公平调度和先进先出调度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值