这个是线段树中最入门的题目,但是由于不了解线段树的概念,当然更不知道怎么样,所以觉得挺费劲,整了一会发现还是基本的思想,就是还是将一个线段继续分割,一直分割到不能分割,这道题目是知道多少个军营,也就是区间为1-n, 将它分割, 建立树, 可以不用保存它区间的左端点和右端点,用数组下标代表就可以了, 数组的值代表当前军营里人的个数,然后这个题就是单个点的增加或者减少,其实增加减少都是增加,减少只是把增加的数目变成负数就行了,还有就是更新完最下面的点还要一直往上更新。那样查找区间的时候才不会出错。下面是代码的实现
转载于:https://www.cnblogs.com/Howe-Young/p/4056526.html
#include <stdio.h>
#include <math.h>
const int MAX = 50010 * 4;
int segment[MAX];//存放线段树,因为类似完全二叉树, 所以可以用数组来表示
//更新root节点的值,即兵营里的人数
void pushUp(int root)
{
segment[root] = segment[root * 2] + segment[root * 2 + 1];
}
//建树,只需要两个点,一个起点,一个终点
void buildTree(int root, int left, int right)
{
if(left == right)
{
//输入兵营里的人数
scanf("%d", &segment[root]);
return;
}
int mid = (left + right) / 2;
buildTree(root * 2, left, mid);
buildTree(root * 2 + 1, mid + 1, right);
//调整它的上面节点的值
pushUp(root);
}
/*更新最下面节点的值,而且要更新以上给他有关联的节点的值, root代表根节点,
pos代表更新的位置, add_num 代表增加的值,如果是负数,说明是减少的,left和right
分别为当前节点区间的左右端点*/
void update(int root, int pos, int add_num, int left, int right)
{
if (left == right)
{
segment[root] += add_num;
return;
}
int mid = (left + right) / 2;
if (pos <= mid)
update(root * 2, pos, add_num, left, mid);
else
update(root * 2 + 1, pos, add_num, mid + 1, right);
//向上调整
pushUp(root);
}
//获取指定区间内的总数
int getSum(int root, int left, int right, int L, int R)
{
if(left == L && right == R)
{
return segment[root];
}
int mid = (L + R) / 2;
int res = 0;
//如果在当前节点的右半个区间内
if(left > mid)
{
res += getSum(root * 2 + 1, left, right, mid + 1, R);
}
//如果在当前节点的左半个区间内
else if(right <= mid)
{
res += getSum(root * 2, left, right, L, mid);
}
//一个在左边,一个在右边
else
{
res += getSum(root * 2, left, mid, L, mid);
res += getSum(root * 2 + 1, mid + 1, right, mid + 1, R);
}
return res;
}
int main()
{
int T;
scanf("%d", &T);
for(int kase = 1; kase <= T; kase++)
{
int n;
scanf("%d", &n);
buildTree(1, 1, n);//建树,同时输入节点的值,也就是兵营的人数
char op[10];
int t1, t2;
printf("Case %d:\n", kase);
while(scanf("%s", op))
{
if(op[0] == 'E')
break;
scanf("%d %d", &t1, &t2);
if(op[0] == 'A')
{
update(1, t1, t2, 1, n);
}
else if(op[0] == 'S')
{
update(1, t1, -t2, 1, n);
}
else
{
printf("%d\n", getSum(1, t1, t2, 1, n));
}
}
}
return 0;
}