题目描述
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。
思路:
因为是数据流中的数据,所以数据的个数会随着时间而增加。若用一个容器来保存流中读出来的数据,则当有新的数据来时,需要在容器中做插入操作,我们可以选择的容器有:
(1)数组:若没有排序,可以用Partition函数找到数组的中位数。在没有排序的数组中插入一个数字和找出中位数的时间复杂度为o(1),o(n)。也可以在插入数之前让数组保持排序,此时插入就需要移位,所以在o(n)的时间内完成插入,o(1)的时间得到中位数。
(2)排序的链表:o(n)的时间找到合适的位置进行插入。如果定义两个指针指向链表中间的结点,(如果链表中的节点数目是奇数,那么这两个指针指向同一个结点),则可以在o(1)的时间内得出中位数。
(3)二叉搜索树可以把插入新数据的平均时间降低到o(logn),但是,当二叉搜索树极度不平衡从而看起来像一个排序的链表时,插入新数据的时间仍然是o(n).
(4)平衡二叉树:o(logn)的时间往AVL树中添加一个新节点,同时用o(1)时间得到所有节点的中位数。
(5)最大堆:用最大堆实现左边的数据容器,用最小堆实现右边的数据容器。往堆中插入一个数据的时间为o(logn),由于只需要o(1)的时间就可以得到堆顶的数据,因此得到中位数的时间复杂度为o(1)。

上图,容器被分为两部分,位于容器左边的数都比右边的数小,另外,P1指向左边最大的数,P2指向右边最小的数。
若能保证容器左边的数都小于右边的数,那么即使左右两边内部没有排序,仍然可以根据左边最大和右边最小获得中位数。想要快速从容器中获得它的最大数和最小数,就要用到堆。


堆实现的细节:
(1)保证数据平均分配到两个堆中,所以两个堆中数据的数目之差不能超过1。为实现平均分配,可以在数据的总数目是偶数时把新数据插入最小堆,否则插入最大堆。
(2)最大堆中所有数据都要小于最小堆中所有的数据。当数据的总数目为偶数时,按照前面的分配规则,将新的数据插入最小堆。但是如果这个新插入的数据比最大堆中的一些数还小!!!我们可以先把这个新的数据插入最大堆,接着把最大堆中最大的数拿出来插入最小堆。此时插入到最小堆中的数是原最大堆中最大的数,这样就可以保证最小堆中所有的数都大于最大堆中的数。
实现:
import java.util.Comparator;
import java.util.PriorityQueue;
public class Solution {
int count;
PriorityQueue<Integer> minHeap=new PriorityQueue<Integer>();
PriorityQueue<Integer> maxHeap=new PriorityQueue<Integer>(11,new Comparator<Integer>(){
@Override
public int compare(Integer o1,Integer o2){
return o2.compareTo(o1);
}
});
public void Insert(Integer num) {
count++;
if((count&1)==0){
//偶数:新数插入最小堆
if(!maxHeap.isEmpty()&&num<maxHeap.peek()){
maxHeap.offer(num);
num=maxHeap.poll();
}
minHeap.offer(num);
}else{
if(!minHeap.isEmpty()&&num>minHeap.peek()){
minHeap.offer(num);
num=minHeap.poll();
}
maxHeap.offer(num);
}
}
public Double GetMedian() {
if(count==0){
throw new RuntimeException("no sufficiant number");
}
double result;
if((count&1)==1){
result=maxHeap.peek();
}else{
result=((minHeap.peek()+maxHeap.peek())/2.0);
}
return result;
}
}
2783

被折叠的 条评论
为什么被折叠?



