记录一个菜逼的成长。。
题目链接
官方题解
初一看很容易看出是完全背包的dp。
但是还要考虑建设值的溢出,也就是说dp[k]不一定是成本最小的。
我们可以往前推一步,假设dp[k],dp[k+1]…中最小的为dp[x]
那么dp[x] 肯定是由小于k的某个状态y,dp[y]+a[i]递推而来。
我们就枚举y值来更新x值。把大于k的x值都算在k上。那么最后答案就是dp[k]的相加。
时间复杂度O(QNMK);(题面上的数据变量)
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int INF = 0x3f3f3f3f;
LL a[110],b[110];
LL dp[10100];
LL Power(LL a,LL b)
{
LL ans = 1;
while(b){
if(b&1)ans *= a;
b >>= 1;
a = a * a;
}
return ans;
}
int main()
{
int T;scanf("%d",&T);
while(T--){
int n,m,K,t;
scanf("%d%d%d%d",&n,&m,&K,&t);
for( int i = 1; i <= m; i++ )
scanf("%lld",a+i);
for( int i = 1; i <= m; i++ )
scanf("%lld",b+i);
int flag = 1;
LL ans = 0;
for( int i = 1; i <= n; i++ ){
fill(dp,dp+K+1,INF);
dp[0] = 0;
for( int j = 1; j <= m; j++ ){
int tmp = b[j] / Power(t,i-1);
for( int k = 0; k <= K; k++ ){
int x = k + tmp;
dp[min(x,K)] = min(dp[min(x,K)],dp[k] + a[j]);
}
}
if(dp[K] == INF){
flag = 0;
break;
}
ans += dp[K];
}
if(!flag)puts("No Answer");
else printf("%lld\n",ans);
}
return 0;
}