题意:输出Fibonacci数组的前四位,n<=100000000;
思路:
首先:看到这个题的数据范围,0(n)的时间复杂度是不行的。
然后想下数组可不可以用来储存呢?n<=100000000,数太大了,就算表示 ,也会超时。
再想是不是有循环节,但是前四位的是跟后面几位有关系的(可以产生进位),不能只存前四位;
最后想想:Fibonacci数肯定有公式可以求得公式如下:
如何产生前四位
先看对数的性质,loga(b^c)=c*loga(b),loga(b*c)=loga(b)+loga(c);假设给出一个数10234432,
那么log10(10234432)=log10(1.0234432*10^7)【用科学记数法表示这个数】=log10(1.0234432)+7;
log10(1.0234432)就是log10(10234432)的小数部分.
log10(1.0234432)=0.010063744(取对数所产生的数一定是个小数)
再取一次幂:10^0.010063744=1.023443198
那么要取前几位就比较好想了吧。
对公式取对数:
最后一项小于0并且很小可以不用计算
步骤:
先取对数(对10取),然后得到结果的小数部分bit,pow(10.0,bit)以后如果答案还是<1000那么就一直乘10。注意偶先处理了0~20项是为了方便处理~
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
const int maxn=1e3+10;
int f[maxn];
void init() {
f[0]=0;
f[1]=1;
for(int i=2; i<=20; i++)
f[i]=f[i-1]+f[i-2];
}
int main() {
init();
int n;
while(cin>>n) {
if(n<=20)//21th->10946
cout<<f[n]<<endl;
else {//µÝÍƹ«Ê½
double log_s=log10(1.0/sqrt(5.0)) +(double)n*log10((1.0+sqrt(5.0))/2.0);
int ans=(int)(pow(10.0,log_s-(int)log_s+3));
cout<<ans<<endl;
}
/*
else{
double ans=-0.5*log10(5.0)+n*log10(a);
int answer;
ans =ans-floor(ans);//取小数部分
ans=pow(10,ans);//取一次幂
answer=(int)(ans*1000);//类型转换
printf("%d\n",answer);
}
*/
}
return 0;
}