一个傻鸟的关于线性代数之中的向量空间的基的施密特正交化的初级认识

线性代数比较抽象,但从代数角度去理解对于我们来说是比较困难的,所以对于其中某些知识,其从几何角度加以理解可以使我们对代数公式有更进一步的理解。接下来我从代数和几何两个角度直接来十分简略的描述这个定理。  

                                                           施密特正交化法

预备知识

1向量的内积:a=(a1,a2,a3...ar)  b=(b1,b2,b3...br)       [a,b]=a1b1+a2b2+...+arbr被称为向量a与b的内积。      注意只同维向量才有内积。

2正交基:设向量空间V的一个基为a1,a2,a3,...,ar    若[ai,aj]=0,( i不等于j    i,j=1,2,3,4,5...r )

其实就是其中任意两个向量的内积为0,和高中向量计算方法基本一致,在三维中xyz三轴上,各任意取一向量,组合起来的向量组都为一个基。维数大于3时,便用这种代数定义来描述更为方便,因为高维难以用几何表示。

3标准正交基,就是一组正交基内,各个向量的范数(模,长度)为1,向量的范数表示方法:||a||

 一。代数角度

设向量空间V的一个 基为 a1,a2,a3,...,ar  以其中一个向量为出发点来构造

令β1=a1

   β2=a2+k21β1    在这里可能会有奇怪之处,为什么要令β2等于这样一个东西? 我个人理解是认为是为了引出高维空间,若只有一个向量只能得一维空间,只有再引入a2才能将空间拓展,后面到n维也是如此。

[β2,β1]=0  得k21= -[a2,β1]/[β1,β1]           ##任意一个基中,不能含有0向量,否则这组向量线性相关,不能称为一个基。!!

  接下来求β3,令β3=α3+k32β2+k31β1

要[β3,βi] i= 1,2    则有k3i= -[a3,βi]/[βi,βi]

依次往下,有βr=αr+krr-1βr-1+krr-2βr-2+...=kr1β1

其中krj=-[αr,βj]/[βj,βj]

由此便得到一个正交基β1,β2,...,βr

代数方法应该都会学习到,写的比较简单。接下来便是我认为十分简洁而且深刻的几何角度

二。几何角度

首先得知道投影向量这个概念    a1在a2上的投影向量为[a1,a2]a1/[a1,a1]

方便理解,便以2维和3维为例,辅以图形理解。

 

 n维的情况完全类似,先假设已知向量空间的一个基a1,a2...an

1以向量a1为正交基中的第一个向量β1

2。求β2,做出a2在β1上的投影,再用a2减去这个投影便得到β2

3.求β3,做出a3在β1和β2上的投影,用a3减去这两个投影得到β3

4,求β4,做出a4在β1,2,3上的投影,用a4减去这三个投影便得到β4

.。

求βn,做出an在β1,2,3,4,5.。。。,n-1上的投影,在用an减去这n-1个投影/

 由此有没有感觉到这就是代数式中的那堆式子,每一项其实就是an在其中一个正交向量上的投影向量。

到这我觉得写的差不多了,我水平是很有限的,自己也感觉得到叙述水平不行,所以如果有什么感觉奇怪的地方可以指出来。

其实先说几何再说代数可能更容易理解透彻,但是,我觉得把代数放前面是为了让大家把这种难看的代数形式多适应,那样再看后面的几何会有那种感觉更简单的成就感。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值