线性代数比较抽象,但从代数角度去理解对于我们来说是比较困难的,所以对于其中某些知识,其从几何角度加以理解可以使我们对代数公式有更进一步的理解。接下来我从代数和几何两个角度直接来十分简略的描述这个定理。
施密特正交化法
预备知识
1向量的内积:a=(a1,a2,a3...ar) b=(b1,b2,b3...br) [a,b]=a1b1+a2b2+...+arbr被称为向量a与b的内积。 注意只同维向量才有内积。
2正交基:设向量空间V的一个基为a1,a2,a3,...,ar 若[ai,aj]=0,( i不等于j i,j=1,2,3,4,5...r )
其实就是其中任意两个向量的内积为0,和高中向量计算方法基本一致,在三维中xyz三轴上,各任意取一向量,组合起来的向量组都为一个基。维数大于3时,便用这种代数定义来描述更为方便,因为高维难以用几何表示。
3标准正交基,就是一组正交基内,各个向量的范数(模,长度)为1,向量的范数表示方法:||a||
一。代数角度
设向量空间V的一个 基为 a1,a2,a3,...,ar 以其中一个向量为出发点来构造
令β1=a1
β2=a2+k21β1 在这里可能会有奇怪之处,为什么要令β2等于这样一个东西? 我个人理解是认为是为了引出高维空间,若只有一个向量只能得一维空间,只有再引入a2才能将空间拓展,后面到n维也是如此。
[β2,β1]=0 得k21= -[a2,β1]/[β1,β1] ##任意一个基中,不能含有0向量,否则这组向量线性相关,不能称为一个基。!!
接下来求β3,令β3=α3+k32β2+k31β1
要[β3,βi] i= 1,2 则有k3i= -[a3,βi]/[βi,βi]
依次往下,有βr=αr+krr-1βr-1+krr-2βr-2+...=kr1β1
其中krj=-[αr,βj]/[βj,βj]
由此便得到一个正交基β1,β2,...,βr
代数方法应该都会学习到,写的比较简单。接下来便是我认为十分简洁而且深刻的几何角度
二。几何角度
首先得知道投影向量这个概念 a1在a2上的投影向量为[a1,a2]a1/[a1,a1]
方便理解,便以2维和3维为例,辅以图形理解。
n维的情况完全类似,先假设已知向量空间的一个基a1,a2...an
1以向量a1为正交基中的第一个向量β1
2。求β2,做出a2在β1上的投影,再用a2减去这个投影便得到β2
3.求β3,做出a3在β1和β2上的投影,用a3减去这两个投影得到β3
4,求β4,做出a4在β1,2,3上的投影,用a4减去这三个投影便得到β4
.。
求βn,做出an在β1,2,3,4,5.。。。,n-1上的投影,在用an减去这n-1个投影/
由此有没有感觉到这就是代数式中的那堆式子,每一项其实就是an在其中一个正交向量上的投影向量。
到这我觉得写的差不多了,我水平是很有限的,自己也感觉得到叙述水平不行,所以如果有什么感觉奇怪的地方可以指出来。
其实先说几何再说代数可能更容易理解透彻,但是,我觉得把代数放前面是为了让大家把这种难看的代数形式多适应,那样再看后面的几何会有那种感觉更简单的成就感。
。