Tensorflow
文章平均质量分 92
牧世
这个作者很懒,什么都没留下…
展开
-
【人脸识别实战二】服务器端设计与实现
本文是《人脸识别实战》系列文章的第二篇,主要描述服务器端各模块的详细设计,包括网络处理模块的处理流程,图像处理模块中的人脸检测与人脸识别算法的集成,以及数据库管理模块的业务逻辑与数据表的设计与实现。原创 2021-12-02 09:06:00 · 1555 阅读 · 0 评论 -
【TVM系列三】算子转换调用流程
文章同步更新在公众号 AIPlayer,欢迎扫码关注,共同进步目录一、前言二、TVM代码结构三、 前端流程四、算子relay转换五、Relay到TOPI实现的调用过程六、总结一、前言本文将从源码分析一个算子在TVM中是如何从前端到后端的转换过程。首先来看一下keras模型编译推理的一个示例。通过pip安装好keras和tensorflow,按照TVM官方文档的示例进行一些修改,因为环境配置的不同,python包的导入以及编译target进行了修改,示例使用c..原创 2021-11-23 09:06:32 · 1147 阅读 · 0 评论 -
【TVM系列二】TVM介绍
文章同步更新在公众号 AIPlayer,欢迎扫码关注,共同进步目录一、TVM的工作流程1、整体流程2、关键数据结构3、Transformations4、搜索空间和基于机器学习的转换5、目标代码转化二、逻辑架构组件三、运行TVM实例1、交叉编译runtime2、编译模型3、运行模型四、总结一、TVM的工作流程TVM主要由两个部分组成:(1)TVM编译器:负责编译和优化模型(2)TVM runtime:提供目标设备上运行模型的API..原创 2021-11-23 08:57:51 · 5739 阅读 · 0 评论 -
【TVM系列一】开发环境搭建
一、前言众所周知,深度学习的计算量庞大,在追求效率与实用性的工业界,深度学习所面临的一个最大的问题就是如何在不影响模型精度的前提下将算法模型部署到目标硬件平台上进行高效的前向计算。和单纯研究相比,在工业界主要遇到了两个问题: 深度学习框架众多,caffe / mxnet / tensorflow / pytorch训练出来的模型都彼此有不同的分发格式,对于部署有环境兼容的问题。 硬件价格昂贵,一些嵌入式平台没有使用GPU的条件。同时一些人也开始在做FPGA/ASIC的深度学习加速卡。原创 2021-11-23 08:46:25 · 1719 阅读 · 0 评论 -
【人脸识别实战一】系统架构设计
1、前言《人脸识别实战》系列文章将讲述一个人脸识别系统的设计与实现过程。本文是系列文章的开篇,主要描述系统的整体架构和各模块的功能职责,以及系统所需要的环境依赖部署。详细的设计细节及项目源码地址在以下的公众号发布:文章同步更新在公众号 AIPlayer,欢迎扫码关注,共同进步2、系统整体架构2.1服务器端(1)网络消息处理模块主要负责管理客户端...原创 2020-04-13 22:30:16 · 5114 阅读 · 1 评论 -
【五分钟学习Tensorflow系列】tf.strided_slice()原理及应用
文章同步更新在公众号 AIPlayer,欢迎扫码关注,共同进步目录一、原理二、使用场景一、原理1、函数原型tf.strided_slice(input_, begin, end, strides=None, begin_mask=0, end_mask=0, ellipsis_mask=0, ne...原创 2019-12-15 19:55:34 · 787 阅读 · 0 评论