1. 两数之和

1. 两数之和

给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。

示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]

方法1:暴力法

算法思路:

暴力法很简单,遍历每个元素 x,并查找是否存在一个值与 target - x 相等的目标元素。

参考代码1:
class Solution {
    public int[] twoSum(int[] nums, int target) {
        for (int i = 0; i < nums.length; i++) {
            for (int j = i + 1; j < nums.length; j++) {
                if (nums[j] == target - nums[i]) {
                    return new int[] { i, j };
                }
            }
        }
        throw new IllegalArgumentException("No two sum solution");
    }
}
复杂度分析:
  • 时间复杂度: O ( n 2 ) O(n^2) O(n2)。对于每个元素,我们试图通过遍历数组的其余部分来寻找它所对应的目标元素,这将耗费 O ( n ) O(n) O(n) 的时间。因此时间复杂度为 O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度: O ( 1 ) O(1) O(1)

方法2:哈希表

算法思路:

在进行迭代并将元素插入到表中的同时,我们还会回过头来检查表中是否已经存在当前元素所对应的目标元素。如果它存在,那我们已经找到了对应解,并立即将其返回。

参考代码2:
class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> map = new HashMap<>();
        for (int i = 0; i < nums.length; i++) {
            int complement = target - nums[i];
            if (map.containsKey(complement)) {
                return new int[] { map.get(complement), i };
            }
            map.put(nums[i], i);
        }
        throw new IllegalArgumentException("No two sum solution");
    }
}
复杂度分析:
  • 时间复杂度: O ( n ) O(n) O(n),我 n n n 个元素的列表一次。在表中进行的每次查找只花费 O ( 1 ) O(1) O(1) 的时间。
  • 空间复杂度: O ( n ) O(n) O(n),所需的额外空间取决于哈希表中存储的元素数量,该表最多需要存储 n n n 个元素。

方法3:排序+双指针

算法思路:

因为题目要求返回输入数组的索引下标,对输入数组进行排序后,双指针进行遍历判断,所以拷贝一个临时数组,用于返回数组下标。

参考代码3:
class Solution {
    // 双指针
    public int[] twoSum(int[] nums, int target) {
        int m=0,n=0,k,board=0;
        int[] res = new int[2];
        int[] tmp1 = new int[nums.length];
        System.arraycopy(nums, 0, tmp1, 0, nums.length);
        Arrays.sort(nums);
        for(int i=0,j=nums.length-1;i<j;){
            if(nums[i] + nums[j] < target)
                i++;
            else if(nums[i] + nums[j] > target)
                j--;
            else if(nums[i] + nums[j] == target){
                m = i;
                n = j;
                break;
            }
        }
        for(k = 0; k < nums.length; k++){
            if(tmp1[k] == nums[m]){
                res[0] = k;
                break;
            }
        }
        for(int i = 0;i < nums.length; i++){
            if(tmp1[i] == nums[n]&&i!=k)
                res[1] = i;
        }
        return res;
    }
}
复杂度分析:
  • 时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn),这里先将数组排序好 O ( n l o g n ) O(nlogn) O(nlogn),再利用双指针法遍历一遍 O ( n ) O(n) O(n)得到结果。
  • 空间复杂度: O ( n ) O(n) O(n),为了保存下标信息另开了一个数组。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值