选择排序 (堆排序)

  1. 简单选择排序

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
稳定性: 不稳定

代码:

#include <iostream>
#include <stdio.h>
using namespace std;

int minValue(int s[],int Start,int End)
{
    int minSig=Start;
    for(int i=Start+1;i<=End;i++)
    {
        if(s[i]<s[minSig])
            minSig=i;
    }
    return minSig;
}
void SimpleSelectSort(int s[],int length)
{
    for(int i=1;i<length;i++)
    {
        int minSig=minValue(s,i,length);
        s[0]=s[i];
        s[i]=s[minSig];
        s[minSig]=s[0];
    }
}
int main()
{
    int length=6;
    int mS[length+1];
    for(int i=1;i<=length;i++)
        scanf("%d",&mS[i]);
    SimpleSelectSort(mS,length);
    for(int i=1;i<=length;i++)
        printf("%d ",mS[i]);
    printf("\n");
    return 0;
}

  1. 堆排序

时间复杂度: O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n))—最坏情况,相对于快速排序来说的一个优点。
空间复杂度: O ( 1 ) O(1) O(1)
稳定性: 不稳定
Note: 堆排序方法对记录数较少的文件并不值得提倡,但对n较大的文件还是很有效的。堆是一个数据结构,利用堆的特点来处理数据,即对顺序表进行排序。
堆的定义: 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。
堆排序的思想: 将待排序序列构造成一个大顶堆(小顶堆),此时,整个序列的最大值(最小值)就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值(最小值)。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值(次大值)。如此反复执行,便能得到一个有序序列。

代码:

#include <iostream>
#include <stdio.h>
#define MAXSIZE 20
using namespace std;

void upAdjust(int H[],int Pos)
{
    H[0]=H[Pos];
    for(int i=Pos/2;i>0&&H[i]<H[0];Pos=i,i/=2)
        H[Pos]=H[i];
    H[Pos]=H[0];
}
void downAdjust(int H[],int length,int Pos)
{
    H[0]=H[Pos];
    int i=Pos,j=2*i;
    while(j<=length&&H[j]>H[0])
    {
        if((j+1)<=length&&H[j+1]>H[j])
            j++;
        H[i]=H[j];
        i=j;
        j=j*2;
    }
    H[i]=H[0];
}
///从数组末尾插入堆元素---大根堆
void InsertHeap(int H[],int length,int newValue)
{
    H[length]=newValue;
    upAdjust(H,length);
}
///从数组开头删除一个堆元素
void DeleteHeap(int H[],int length)
{
    //H[0]=H[1];
    printf("%d ",H[1]);
    H[1]=H[length];
    downAdjust(H,length-1,1);
}
///利用堆的特性对数组进行排序,即堆排序
void HeapSort(int H[],int mlength)
{
    for(int i=(mlength/2);i>0;i--)  //创建大根堆
        downAdjust(H,mlength,i);
    for(int i=mlength;i>1;i--)  //筛选排序
    {
        H[0]=H[i];
        H[i]=H[1];
        H[1]=H[0];
        downAdjust(H,i-1,1);
    }
}

int main()
{
    int mHeap[MAXSIZE];
    /*
    //test 堆数据结构
    for(int i=1;i<=5;i++)
    {
        int newValue;
        scanf("%d",&newValue);
        InsertHeap(mHeap,i,newValue);
    }
//    for(int i=1;i<=5;i++)
//        printf("%d ",mHeap[i]);
    for(int i=5;i>0;i--)
        DeleteHeap(mHeap,i);
    printf("\n");
    */
    //test 堆排序
    int mlength=6;
    for(int i=1;i<=mlength;i++)
        scanf("%d",&mHeap[i]);
    HeapSort(mHeap,mlength);
    for(int i=1;i<=mlength;i++)
        printf("%d ",mHeap[i]);
    printf("\n");
    return 0;
}

2017/08/30 补充
建堆的过程可用向上调整:

//还未验证,数组长度为len+1
void creatHeap(int H[],int len)
{
	for(int i=1;i<=len;i++)
		upAdjust(H,i);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值