一、定义
美国制造工程师协会机器视觉分会和美国机器人工业协会自动化视觉分会为机器视觉作了如下定义:机器视觉是通过光学装置和非接触传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。通俗地说,机器视觉就是用机器模拟生物宏观视觉功能,代替人眼来做测量和判断。 首先,通过图像传感器将被摄取的目标转化成为图像信号,传送给专用的图像处理系统,根据像素分布、亮度和颜色等信息,转变成数字化信号;随后,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、长度、数量、位置等;最后,根据预设的容许度和其他条件输出结果,如尺寸、角度、偏移量、个数、合格/不合格、有无等从广义角度来看,凡是通过光学装置获取真实物体的信息以及对相关信息的处理与执行都是机器视觉,这就包括了可见视觉以及非可见视觉,甚至包括人类视觉不能直接观察到的、物体内部信息的获取与处理等。
二、机器视觉与计算机视觉的区别
计算机视觉Computer Vision的关键词是Computer,机器视觉Machine Vision的关键词是Machine,这间接表达了二者的侧重领域不同。通俗地说,计算机视觉比较侧重于对图像的分析,回答“是什么”的问题;而机器视觉更关注图像处理的结果,目的是控制接下来的行为,回答“怎么样”的问题。
计算机视觉一般使用相机设备,可以是工业相机、高速摄像机,也可以是简易摄像头等,主要是对人眼的生物视觉进行模拟,如同人眼把看到的图像转化为脑海中的画面一样,计算机视觉的任务就是把数字图像转化成生动、有意义、有语境的场景,输出的内容是计算机模拟人类对图像的观察和理解。相机拍摄所得图像存储在计算机中的只是一个数字集合。计算机视觉所做的就是从这个数字的集合中提取出需要的信息,如图中有什么物体,分别在什么位置,处于何种状态等,目的是实现对客观世界中场景的感知、识别和理解。简言之,计算机视觉主要强调给计算机赋能,使其能看到并理解这个世界中的各个物体。
机器视觉是一套光机电计结合的复杂设备,涉及光学成像、传感器、视频传输、机械控制、相机控制、图像处理等多种技术,每个环节都会影响到最终的检测结果。从功能上看,机器视觉不像计算机视觉那样关注对象“是什么”,而是重点观测目标的特征、尺寸、形态等信息,其目的在于根据判断的结果来控制现场的设备动作。
从本质上说,二者都属于视觉技术,共用同一套理论系统,但计算机视觉更侧重于对理论算法的研究,如深度学习在计算机领域已经有许多前沿算法,但这些算法在实际应用中仍有各种局限,离在实际工程中应用还有很长的路要走。而机器视觉是落地的技术,它更侧重于实际应用,强调算法的实时性、高效率和高精度。 机器视觉的优势还在于,在一些不方便使用人工或人工无法满足要求的场合,机器视觉可以很好地代替人眼,如在各种恶劣环境下进行高速实时检测。机器视觉还广泛应用于机器人研究,是机器人的“眼镜”,指引机器人的移动和操作行为。机器视觉和计算机视觉的发展方向和应用领域是各不相同的。
三、机器视觉系统的组成
一个完整的机器视觉由以下几部分组成:
①一个或多个工业相机(包括可见光、非可见光、多光谱);
②照明光源(包括可见光、非可见光、激光、闪光灯);
③光学系统(包括一个或多个透镜组和滤光片);
④机械部分(为整个机器视觉系统提供安装基准和部件调节功能);
⑤电气部分(主要是供电、走线和数据接口);
⑥硬件部分(包括工控机、嵌入式系统、图像采集卡、传感器、触发器、执行器),对于涉及与机器人协作的机器视觉系统,机器人可被视为执行器;
⑦算法;
⑧软件系统(包括人机交互界面、与其他类计算机设备的通信模块、远程维护模块、离线更新模块)。
四、机器视觉知名企业
由于机器视觉注意是服务于工业自动化,基于中国工业自动化的发展进程,在机器视觉领域,国外企业无论从技术水平还是应用领域都要领先于国内企业。
国外顶尖的机器视觉企业有:日本基恩士Keyence、美国康耐视Cognex、德国MVTec、瑞士堡盟Baumer;
国内顶尖的机器视觉企业有:海康机器人、大恒图像、中科院部分研究所。
由于机器视觉产品的最核心竞争力不是算法,而是传感器、光学系统、精密机械这3部分,所以日本和德国凭借在精密制造领域的优势处于领先地位,且我国由于受限于上述关键部件,短时间内无法达到相同水平。
五、机器视觉应用行业
按照工业生产类型来分:无论是小批量的作坊式生产、大规模的离散型生产、连续的流程型生产、实验室级别的化验检验,都在越来越多的使用机器视觉技术。
而在各工业行业中,由于德国和日本最先是用机器视觉技术来解决汽车行业的生产需求,所以其在汽车行业应用最为广泛和成熟。目前,在芯片、新能源、航天、医疗、电子、食品、包装等行业也得到了大规模成熟应用。
六、机器视觉应用任务类型
前面都是铺垫,这才是本文的关键。
①识别码识别:即使用物体上的标记来识别物体,通常是标准化的条形码或二维代码,但也可以是自定义代码。典型应用是物料流控制和物流。
②目标识别:表示使用诸如形状/几何、尺寸、颜色、结构/拓扑或纹理等特征