110. Balanced Binary Tree

Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

第一种递归解法

这个解法就是从根节点开始依次查各个节点的左右子节点深度,一致则从左右节点开始搜一次深度。一旦发现左右深度不一致则得到结论。该算法很有可能造成重复搜索,所以相对耗时。代码如下:

public class Solution {
    public boolean isBalanced(TreeNode root) {
       if(root == null) return true;
       if(Math.abs(getDepth(root.left) - getDepth(root.right)) < 2) {
           return isBalanced(root.left) && isBalanced(root.right);
       } else return false;
    }

    public int getDepth(TreeNode node) {
        if(node == null) return 0;
        int left = getDepth(node.left);
        int right = getDepth(node.right);
        return Math.max(left, right) + 1;
    }
}


第二种递归解法

创建一个方法,参数是当前结点深度,返回值是左右节点所能到的深度。相比较上一个算法不会有重复搜索的情况,所以耗时较少。代码如下:

public class Solution {
    public boolean isBalanced(TreeNode root) {
        if(root == null) return true;
        return judge(root, 0) > -1;
    }

    public int judge(TreeNode node, int depth) {
        if(node == null) {
            return depth - 1;
        }
        int left = judge(node.left, depth + 1);
        int right = judge(node.right, depth + 1);
        if(left != -1 && right != -1 && Math.abs(left - right) < 2) {
            return Math.max(left, right);
        } else {
            return -1;
        }
    }
}

同时分享一个和我这个解法思路相同,但是更加清晰简洁的代码写法。链接:
Java solution based on height, check left and right node in every recursion to avoid further useless search

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值