
310-AI
文章平均质量分 90
oscar999
毕业于中国科学技术大学,数据库四级、通过系统设计师、系统分析师、信息系统项目管理师资格认证。国际项目管理(IPMP)C级认证。超过20年软件项目开发和管理经验,精通Java Web相关技术(包括Spring系列、Ext JS等),对PHP、Python、C#、Vue等有涉猎。
展开
-
Spring Boot AI 之 Chat Client API 使用大全
ChatClient 提供了一套流畅的 API,支持与 AI 模型进行同步和流式交互。通过构建 Prompt,用户消息和系统消息被传递给 AI 模型,其中用户消息是直接输入,系统消息用于引导对话。Prompt 可包含占位符,运行时根据用户输入进行替换,定制 AI 响应。ChatClient 通过 ChatClient.Builder 创建,支持自动配置或编程方式构建。在需要与多个聊天模型协作的场景中,可以手动创建多个 ChatClient 实例,或为不同模型类型定义单独的 ChatClient bean,并原创 2025-05-21 22:33:22 · 518 阅读 · 0 评论 -
Spring AI 介绍
Python因其简洁语法、丰富的AI库和框架、跨平台兼容性及活跃社区,成为AI开发的主要语言。Spring AI框架的推出为Java开发者提供了快速进入AI开发的机会。Spring AI旨在将Spring生态系统的设计原则应用于AI领域,支持主流AI模型和向量数据库,提供可移植API、结构化输出、工具调用、可观测性等功能。通过Spring Boot自动配置,开发者可以轻松集成AI模型和向量存储。快速开始指南展示了如何使用Spring AI与Azure OpenAI进行简单对话,并提供了完整项目示例代码。Sp原创 2025-05-20 23:25:33 · 349 阅读 · 0 评论 -
Spring AI 之 AI核心概念
AI核心概念介绍原创 2025-05-07 23:02:51 · 1596 阅读 · 0 评论 -
Spring Boot之MCP Client开发全介绍
标准启动器(spring-ai-starter-mcp-client)允许客户端同时通过 STDIO(进程内)和/或 SSE(远程)传输方式连接到单个或多个 MCP 服务器。WebFlux 启动器提供了与标准启动器类似的功能,但它使用的是基于 WebFlux 的 SSE(服务器发送事件,Server-Sent Events)传输实现。通过引入此依赖,可以利用 WebFlux 的响应式编程模型来处理与 MCP 服务器的 SSE 连接,从而在需要高并发和低延迟的场景下提供更好的性能。原创 2025-05-06 22:20:25 · 1180 阅读 · 0 评论 -
Spring Boot 之MCP Server开发全介绍
完整支持 MCP 服务器的所有功能,基于 Spring WebFlux 并提供基于 SSE(服务器发送事件,Server-Sent Events)的服务器传输方式,同时可选支持 STDIO 传输方式。完整支持 MCP 服务器的所有功能,基于 Spring MVC 并提供基于 SSE(服务器发送事件,Server-Sent Events)的服务器传输方式,同时可选支持 STDIO 传输方式。根据服务器类型(同步或异步),自动将提示信息规范转换为相应的同步或异步形式,简化了开发过程中的规范转换工作。原创 2025-05-05 08:05:13 · 1037 阅读 · 0 评论 -
SSE(Server-Sent Events)完整使用示例
本篇使用Node.js 作为服务端,在浏览器客户端演示SSE的完整实例和演示。实现了一个基于 Server-Sent Events (SSE) 的实时数据推送功能。原创 2025-05-04 09:55:18 · 86 阅读 · 0 评论 -
一篇撸清 Http,SSE 与 WebSocket
特性HTTPWebSocket通信模式请求-响应(客户端主动发起)单向推送(仅服务器到客户端)全双工(客户端与服务器双向通信)协议基础基于 HTTP基于 HTTP 长连接独立协议(握手阶段依赖 HTTP)连接类型短连接(默认)或长连接(HTTP/1.1)长连接(持久性)长连接(持久性)数据格式任意格式(文本、二进制等)仅文本(UTF-8)文本和二进制延迟高(依赖轮询或长轮询)低(服务器主动推送)极低(双向即时通信)自动重连不支持支持(内置重连机制)原创 2025-05-04 09:54:25 · 464 阅读 · 0 评论 -
纯Java实现STDIO通信的MCP Server与客户端验证
在 MCP 协议中通过 STDIO(标准输入/输出)通信 是一种进程间通信(IPC)方式,服务器与客户端通过标准输入(stdin)和标准输出(stdout)交换数据。Spring Boot 实现MCP Server相对来说更为简单,本篇介绍在不使用Spring Boot的状况下,如何实现实现 STDIO 的MCP服务器以及调用验证。实例说明本篇和Spring Boot篇类似,实现一个简单加法的 Tool。简单起见,仅演示MCP的Tool的功能,为了更简单,该工具实现的功能只是一个简单的加法运算。原创 2025-05-03 19:49:14 · 948 阅读 · 0 评论 -
基于Spring Boot实现STDIO通信的MCP Server与验证
创建一个Spring Boot项目。可以通过Spring initializer 创建,也可以在目录中直接添加一个 pom.xml 文件。这里的项目名称是mcp-spring添加依赖项</</</</</</</</</</</</</</</</</</</</</</</</</</</</</</</添加一个计算器的工具类 MyCalculateService,这个类有一个方法 add()使用@Tool 注解为一个工具。/***/@Service完成主入口类文件。原创 2025-05-03 18:08:05 · 1307 阅读 · 0 评论 -
MCP Java SDK 介绍与使用指南
io.modelcontextprotocol.sdk:mcp-spring-webmvc - 用于基于 servlet 的应用的基于 WebMVC 的服务器发送事件 (SSE) 传输实现。io.modelcontextprotocol.sdk:mcp-spring-webflux - 用于响应式应用的基于 WebFlux 的服务器发送事件 (SSE) 传输实现。io.modelcontextprotocol.sdk:mcp-test - MCP 应用的测试工具和支持。原创 2025-04-29 22:59:24 · 1128 阅读 · 0 评论 -
Cline 之Plan和Act模式
Plan/Act 框架通过强制分离规划与实施阶段,有效避免了传统开发中常见的"边想边做"问题,特别适用于中大型项目的系统性开发。建议开发团队根据项目复杂度动态调整模式切换频率,在敏捷性和严谨性之间取得最佳平衡。原创 2025-04-22 23:14:11 · 515 阅读 · 0 评论 -
AI编程助手Cline之快速介绍
中的开源 AI 编程助手插件,旨在通过结合大语言模型(如 Claude 3.5 Sonnet、DeepSeek V3、Google Gemini 等)和工具链,为开发者提供自动化任务执行、智能代码生成、错误修复等功能,显著提升开发效率。安装之后需要提供API的提供商和Token.Cline 是一款深度集成在。原创 2025-04-22 22:58:57 · 785 阅读 · 0 评论 -
RAG的实现快速示例
其实就是结合了检索与生成,核心流程分为检索(Retrieval)和生成(Generation)两大阶段,通过外部知识库增强生成式模型的准确性和可靠性。流程其实也很简单,如下图:本篇通过一个快速示例演示RAG的实现。原创 2025-04-10 23:12:15 · 737 阅读 · 0 评论 -
基于Python+LanceDB实战向量搜索
本篇实战演示向量搜索的实现和示例。原创 2025-03-27 23:06:46 · 371 阅读 · 0 评论 -
Hugging Face镜像——再也不用烦恼无法从Hugging Face下载模型和数据集了
在AI 开发的时候很多时候会从Hugging Face下载模型和数据集,但是直接访问会提升速度慢或者无法下载,解决方法就是使用Hugging Face 的中国镜像。镜像站地址为:。这个镜像由国内开发者维护,支持模型、数据集、库文件的加速下载。datasets首先安装依赖,然后设置环境变量。原创 2025-03-26 22:40:23 · 3135 阅读 · 0 评论 -
在本地Windows机器加载大模型并生成内容
本篇演示在本地机器下载和加载大模型并获取AI产生的内容。简单起见,使用的大模型是Qwen2.5-0.5B-Instruct,整个模型的所有文件不到1G。Qwen2.5-0.5B-Instruct 是阿里巴巴云 QWen 团队基于Transformer 架构开发的轻量级指令调优语言模型,专为资源有限场景设计。环境准备。原创 2025-03-25 21:58:09 · 842 阅读 · 0 评论 -
使用LLM 构建MCP服务端和客户端
MCP Inspector 工具测试服务器。包括README 和相关文档。它需要与哪些外部系统交互。连接到其他的MCP客户端。服务器将暴露哪些资源。原创 2025-03-23 21:51:17 · 432 阅读 · 0 评论 -
一篇道尽MCP核心概念
MCP让实现自定义传输变得简单。任何传输实现只需要符合Transport接口即可:可以实现自定义传输用于:自定义网络协议专用通信通道与现有系统集成性能优化TypeScriptonclose?onerror?onmessage?原创 2025-03-23 21:48:29 · 1031 阅读 · 0 评论 -
TensorFlow快速介绍
TensorFlow 是由 Google 开发的开源机器学习框架,广泛用于深度学习、数值计算和数据处理。其核心基于(节点表示操作,边表示多维数据数组“张量”),支持灵活部署(CPU/GPU/TPU、移动设备、浏览器等)。使用pip安装过程界面如下:安装完成的界面如下:tf.print()原创 2025-03-22 20:34:18 · 1834 阅读 · 0 评论 -
CUDA与cuDNN 的介绍
CUDA(Compute Unified Device Architecture)是NVIDIA推出的并行计算平台和编程模型,允许开发者利用GPU的强大计算能力进行通用计算。原创 2025-03-20 22:27:05 · 760 阅读 · 0 评论 -
大模型之蒸馏模型
蒸馏模型(Distilled Model)是一种通过知识蒸馏(Knowledge Distillation)技术训练得到的轻量级模型,其核心思想是将一个复杂的大模型(称为教师模型)的知识“迁移”到一个更小、更高效的模型(称为学生模型)中。这种方法可以在保持较高性能的同时,显著减少模型的参数量和计算资源需求。核心原理教师模型(Teacher Model)教师模型通常是一个参数量大、性能强的复杂模型(例如深度神经网络),但计算成本高,难以部署在资源受限的环境(如移动端)。原创 2025-03-20 21:26:26 · 979 阅读 · 0 评论 -
MCP(Model Context Protocol)的介绍与开发初体验
Model Context Protocol, 模型上下文协议,是一种开放协议,用于标准化应用程序向大型语言模型(LLM)提供上下文的方式。可以将 MCP 视为 AI 应用的 USB-C 接口:正如 USB-C 为设备连接各种外设和配件提供了标准化方式,MCP 也为 AI 模型连接不同数据源和工具提供了统一标准。原创 2025-03-19 23:04:10 · 1372 阅读 · 0 评论 -
LanceDB快速入门之基本操作与API一览
LanceDB可以以多种方式运行可以嵌入到现有后端(如您的 Django、Flask、Node.js 或 FastAPI 应用程序)中直接从如 Jupyter 笔记本等客户端应用程序中用于分析工作负载部署为远程无服务器数据库。原创 2025-03-12 23:25:27 · 821 阅读 · 0 评论 -
Node JS 调用模型Xenova_all-MiniLM-L6-v2实战
Transformers 是由 Hugging Face 团队开发的开源 库,专注于提供基于 Transformer 架构 的预训练模型和工具。它简化了自然语言处理(NLP)任务的实现流程,支持文本生成、翻译、分类、问答等场景,并兼容 PyTorch、TensorFlow 等深度学习框架。Transformers 有Python 和 NodeJS 两个版本。如果Hugging Face无法访问Python 版本可以使用ModelScope提供的库NodeJS。原创 2025-03-05 23:32:34 · 917 阅读 · 0 评论 -
一篇吃透模型:all-MiniLM-L6-v2
MiniLM 是什么?MiniLM 是微软研究院开发的一种轻量级的语言模型,旨在以较小的参数量和计算成本实现与大型语言模型(如 BERT)相当的性能。它是基于 Transformer 架构的预训练模型,通过深度自注意力蒸馏(Deep Self-Attention Distillation)等技术进行压缩和优化,使其能够在资源受限的环境下高效运行。主要特点轻量级:MiniLM 显著减少了模型的参数量和计算成本,使其能够在移动设备、嵌入式系统等资源受限的环境下运行。高性能。原创 2025-03-03 23:10:23 · 1821 阅读 · 0 评论 -
RAG(检索增强生成)快速入门
Karate 作为英文单词翻译过来的意思是:空手道,不过这里的Karate 和日本无关,和李小龙也没有关系, 而是一个API的测试框架。Karate框架遵循Cucumber风格的编程方式,这种方式遵循行为驱动开发(BDD)的方法。非编程人员也能轻松理解其语法。这个框架是唯一一个将API自动化测试和性能测试结合成一个独立工具的API测试工具。Karate是一个BDD(行为驱动开发)测试框架,而不是TDD(测试驱动开发)。它被设计为对非程序员友好。原创 2025-02-26 22:18:41 · 455 阅读 · 0 评论 -
交互编程工具之——Jupyter
简单来说, Jupyter Notebook 的作用就是你不需要在IDE编写代码和运行, 而可以直接在网页上编写代码并运行, 这个网页除了代码之外,还可以记录一些其他的文字,类似于一个包含文字和代码的笔记,但是这些代码是可以直接运行的。),允许用户在一个基于浏览器的界面中编写代码、运行代码、可视化结果,并添加富文本(如 Markdown)进行说明,形成可重复、可分享的文档。Jupyter 是数据科学家的“瑞士军刀”,将代码、文档和可视化整合在一个界面中,极大提升工作效率和可复现性!安装需要等待一段时间,原创 2025-02-20 23:17:26 · 1103 阅读 · 0 评论 -
AI向量数据库之LanceDB快速介绍
LanceDB 是一个开源的向量搜索数据库,具备持久化存储功能,极大地简化了嵌入向量的检索、过滤和管理。安装完成后,你可以在项目中引入 LanceDB 并使用其 API 进行向量存储、查询和管理。第二个参数是一个数组,表示要插入的初始数据。LanceDB 的核心是用 Rust 🦀 编写的,并基于 Lance 构建。如果路径不存在,LanceDB 会自动创建。变量中,通常是一个包含相似向量数据的数组。变量中,通常是一个符合条件的数据数组。原创 2025-02-13 23:03:55 · 2206 阅读 · 6 评论 -
DeepSeek大模型系列
如果需要使用DeepSeek 做一些批量或进阶的事情,则需要使用调用API的方式。这里还需要加上最近发布的DeepSeek-R1 模型(2025/01/20 发布)以上两种方式注册账号就可以,使用是免费的。原创 2025-02-03 13:35:30 · 2637 阅读 · 0 评论 -
AI主流大模型介绍和API价格比较
最佳性价比次佳性价比预算有限: GPT-3.5 Turbo 和 Gemini Pro高性能需求: GPT-4o 和 GPT-4 Turbo顶级性能: Claude 3 Opus 和 GPT-4开源模型(如 LLaMA 2 和 Mistral)在价格上具有绝对优势,但需要自行部署和维护,适合有技术能力的团队。原创 2025-02-03 10:21:50 · 2762 阅读 · 0 评论 -
AI开发学习之——PyTorch框架
PyTorch (Python torch)是由 Facebook AI 研究团队开发的开源机器学习库,广泛应用于深度学习研究和生产。它以动态计算图和易用性著称,支持 GPU 加速计算,并提供丰富的工具和模块。创建需要梯度的张量x。定义函数y = x * 2和。通过计算z对x的梯度。根据链式法则,梯度计算结果为。PyTorch 的自动微分机制使得梯度计算变得非常简单,尤其是在深度学习模型中,这种机制可以自动计算损失函数对模型参数的梯度,从而支持梯度下降等优化算法。torch。原创 2025-02-02 20:34:42 · 1521 阅读 · 0 评论 -
AI模型平台之——ModelScope(魔搭)
是指对模型进行存储、版本管理和相关操作的模型服务,用户上传和共享的模型将存储至模型库中,同时用户也可在Model hub中创建属于自己的模型存储库,并沿用平台提供的模型库管理功能进行模型管理。可以创建和管理自己的模型库,利用界面或开发环境来便捷地上传、下载相关模型文件,并从 Model Hub中获取有用的模型和数据集元数据。完成创建后,平台将为分配一个存储地址,可通过页面或者git的方式将文件添加至该模型库中,也可通过页面上传相关的模型文件。,旨在为开发者、研究者和企业提供丰富的预训练模型和工具。原创 2025-02-02 11:25:42 · 6971 阅读 · 0 评论 -
AI基本概念之——张量(Tensor)
张量(Tensor)是数学和物理学中的一个重要概念,广泛应用于线性代数、微分几何、物理学和机器学习等领域。简单来说,张量是多维数组的推广,能够表示标量、向量、矩阵以及更高维的数据结构。张量作为一种强大的数学工具,广泛应用于多个领域。它不仅能够高效地表示和处理高维数据,还能够描述复杂的物理现象和几何结构。在深度学习中,张量更是模型构建和优化的基础,推动了人工智能技术的快速发展。原创 2025-02-01 20:15:18 · 1153 阅读 · 0 评论 -
AI开发之 ——Anaconda 介绍
Anaconda 是数据科学和 AI 领域的工具,通过集成常用库和工具,简化了环境管理和包安装,特别适合初学者和需要快速上手的开发者。这里下载Windows 的安装版本,下载的文件名为: Anaconda3-2024.10-1-Windows-x86_64.exe。Anaconda的官方介绍是: 人工智能的操作系统,用于获取、构建和部署数据科学与人工智能项目,一句话:Anaconda 是Python 库和环境便捷管理的平台。安装完成的启动的画面如下,提示注册和登录。直接点击运行安装程序,按提示完成安装。原创 2025-02-01 14:02:55 · 1113 阅读 · 0 评论 -
Python 环境隔离和实现方法
工具适用场景优点缺点venv轻量级项目Python 内置,无需安装功能有限,仅支持 Python 包virtualenv兼容 Python 2 和 3 的项目功能丰富,支持 Python 2需要额外安装conda数据科学、机器学习项目支持 Python 和非 Python 依赖需要安装 Anaconda 或 Minicondapipenv依赖管理复杂的项目自动管理虚拟环境和依赖需要额外安装poetry现代化项目,需要打包和依赖管理支持依赖管理和打包需要额外安装。原创 2025-02-01 11:01:34 · 1439 阅读 · 0 评论 -
DeepSeek 使用初体验
DeepSeek 大模型在蛇年前夕突然大火,在蛇年春节持续发酵,随时随地,各个年龄段都在讨论这个话题。Web站点,手机App的下载和使用也出现暴增,DeepSeek 一度关闭了注册功能,甚至国外的很多黑客都来攻击DeepSeek 的网站。从来这么敬仰和自豪的来试用一个模型,曾经 ChatGPT横空出世的时候,因为需要国外的手机才能注册,特定买了一个虚拟号才能进行试用,虽然后来百度的文心一言,阿里的同义千问出现,但是相比ChatGPT,还是略逊一筹。原创 2025-01-31 16:46:20 · 5285 阅读 · 1 评论 -
编程大模型之—Qwen2.5-Coder
Qwen2.5-Coder是阿里云通义大模型团队推出的专门针对代码的大型语言模型系列。原创 2025-01-31 11:47:18 · 2871 阅读 · 0 评论 -
用代码生成代码之Roslyn-C#代码分析和生成工具
此外,Roslyn还提供了一种新的语法解析器和语义分析器,能够更快速地解析和分析代码,提高了代码分析的效率。Roslyn API是微软开源的.NET编译器平台提供的一套丰富的代码分析和编译API,它支持C#和Visual Basic语言。它的出现不仅提高了开发效率和质量,还为开发者带来了更多的创新可能性。Roslyn是微软公司开源的.NET编译器,它提供了丰富的代码分析API,并支持C#和Visual Basic代码的编译。是代码的抽象语法树(AST)的表示,它包含了代码的结构化信息。原创 2024-09-20 06:55:56 · 1727 阅读 · 0 评论 -
代码自动化重构工具OpenRewrite介绍
定义:OpenRewrite 是一个用于源代码的自动重构工具,它通过提供一套自动化的解决方案,帮助开发人员改善代码的可读性、可维护性和性能。目的:OpenRewrite 的主要目的是减少手动修改代码的工作量,并确保代码的一致性和质量。应用场景:OpenRewrite 的主要用途包括但不限于自动化代码重构、框架迁移、安全漏洞修复以及代码技术债务的消除等。原创 2024-07-24 23:06:56 · 2177 阅读 · 0 评论 -
AI基本概念(人工智能、机器学习、深度学习)
一、概述ChatGPT 3.5是OpenAI在ChatGPT系列基础上进行改进的一款AI模型,它在自然语言处理方面展现出了非常强大的能力,能够进行对话、阅读、生成文本等多种任务。二、主要特点模型规模与参数:ChatGPT 3.5的预训练模型包含了1750亿个参数,是目前最大的自然语言处理模型之一。多语言支持:该模型可以处理多种语言,包括英语、西班牙语、德语、法语、意大利语、荷兰语、俄语、韩语、日语、阿拉伯语和中文等。自适应回复。原创 2024-07-01 22:22:28 · 2887 阅读 · 0 评论