HashMap
关键属性
默认的容量就是16,装载因子为0.75。
put方法解析
put方法的执行流程图:
put方法需要返回对一个的hash值和key和value。
putVal方法:
1.判断判断HashMap中数组的长度是否为0,如果为0就使用resize方法进行扩容,且第一次扩容的大小为16。(初始化)
2.判断对应位置上是否有值,如果没值则直接赋值。有值则需要进行二次判断。
3.如果存在的key的值和传入的key的值相同的话就直接进行覆盖。如果不相同并且节点是红黑树的时候就做红黑树的插入。反之则做链表的插入。
4.在链表的插入中,我们通过循环找到链表的尾部,并创建一个节点,如果个数大于等于8则直接将链表转换为红黑树,插入值的链表中存在key相同的值则直接进行覆盖。反之就进行正常的尾插法。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//通过取模的方式算出索引,但是使用&运算代替,效果是一样的,&的效率更高
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
hashMap的扩容机制
扩容机制的流程图:
resize方法
1. 在初始化的时候会将容量设置为16,装载数设置为12。
2.在其他时候扩容时会扩容到原来的2倍。此时我们会创建一个新的数组,并将旧数组中的值赋到新数组上。
3.遍历旧的数组,如果发现当前节点旧一个key的话,直接对旧key的hash进行取模,如果是红黑树则直接使用红黑树的添加,如果是链表,则对该链表进行遍历,计算每个key的hash做旧容量的与运算,如果为0则直接插入新数组中原来的位置,不为0则存储到新数组中原来位置 + 新增容量大小的总和这个索引的位置上。
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
寻址算法
在数据做添加的时候需要调用hash函数。 调用hashCode方法,进行二次哈希,将hashCode的值右移16位并做异或操作算出hash值。做右移操作主要是为了数据分布的更均匀。减少hash冲突。
在计算索引时使用与运算其效果等同于取模操作,使用与运算效率会更高。
最终找到数据存储的位置。
并且要保证数组的长度为2的n次幂。
1.因为计算索引时的取模操作需要长度为2的n次幂才能等价于运算。
2.在扩容的时候计算索引的效率会跟高。hash&oldCap == 0时元素保留在原来的位置上,反之,存储在原来位置+扩容大小(oldCap)的和的位置上。